|
Ansys里模态质量矩阵的提取方法
3 ]7 P' w8 H$ [$ c模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下: y; ^) L9 S: {9 k
1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω) * g5 ?& h2 J% z
2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。 % Q1 s! ]3 [$ U U7 b. H
下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子:
; j+ g L. P$ V& D3 c+ M& ^/PREP7
: z( {4 e! C- }- Z/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM
; {) b# c1 M2 PC*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2
t4 `+ H& v, aET,1,COMBIN14,,,2
3 S0 V# C$ d- {2 }3 V" uET,2,MASS21,,,4 ) y/ u! u9 q" m5 |' E9 V0 b
R,1,200 ! SPRING CONSTANT = 200
6 K9 w* I9 r7 H+ L7 K- uR,2,800 ! SPRING CONSTANT = 800
7 ^4 u2 z5 o" j& U# O# |2 w! ^6 [0 @R,3,.5 ! MASS = .5 5 |0 w1 Q. a9 ^8 m8 p w
R,4,1 ! MASS = 1
* j! a, N ^; {6 A: F. vN,1 ; u- v r( |; P2 U4 B- x
N,4,1
. N+ p' P2 f0 t' t0 ~FILL " R5 ?* o6 I5 ^2 e: T9 ~; [( {/ q
E,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
% T9 o1 w6 w; H1 s, O f* [TYPE,2
% r: W8 L. p8 W3 p" zREAL,3 c8 Q, O6 q8 h2 @# K. m4 Q9 s3 n( @
E,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3)
: G% ~( n3 F, p" C& J+ C& G# `TYPE,1 9 ~ J2 E- n0 \$ y+ ^1 D7 T
REAL,2 : l3 @4 ~, P$ V: ?6 j# z2 P* T
E,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2) ( e: h Y& G9 C& J' U. N
TYPE,2
6 x1 u' s5 E5 F d8 L9 a# f8 g2 XREAL,4 5 M, ^+ S: y* h/ r
E,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4) ) d, K4 ?# _& ]4 M
TYPE,1 : _4 y% w1 F; _' {6 C
REAL,1 1 @. q8 L& V% c; l
E,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
) I/ g, u% b q4 dM,2,UX,3 ' c2 k- j$ e6 K: ?9 m5 v4 q
OUTPR,BASIC,1
/ X& l& V* X# M3 }2 ]D,1,UY,,,4
+ T( W7 H# n/ eD,1,UX,,,4,3
: U$ v+ I9 L0 a: E$ ~8 {/ T& nFINISH
5 ]6 e+ v1 D3 g6 K0 O) L/ W/SOLU
& V% u$ U; F2 a' `6 o3 h+ sANTYPE,MODAL
. O4 n& x5 q, C6 {- s wMODOPT,subspa,2,,,2,ON - i2 g0 i( @( {' a& r
MXPAND,2,,,YES
9 @' R6 B& H/ D2 ]# I% s# ], ySOLVE " c1 {0 W5 W2 C8 }7 ]
FINISH $ C: K4 I# ^& t6 c5 v7 E, \
/post1
( B0 v" u! D* x' Z$ @" Qset,1,1 % V1 d5 I! ` ^# W0 v$ V4 |. J' U2 _
etabl,kene,kene
v; I) E$ q" c6 c) |ssum
# t4 w! ]+ n1 l( ]1 D6 V9 S2 P$ L2 I*get,keneval1,ssum,,item,kene
7 P: s: `* T5 @- [! s+ F*get,freqval1,mode,1,freq 4 i% w m' \# c; f, N C
eigen1=(2*3.14159*freqval1)**2 & D+ j0 ?" F; S" e4 W( F! r
pmass1=2*keneval1/eigen1
8 {2 q# k+ v. r9 @# o5 ?; \set,1,2
9 S. m) ?& `# `9 N+ ]etabl,kene,kene ' A: G: k( b! x! s1 r3 _' j$ i* c
ssum / T b' H: Q. B- x d" f. D
*get,keneval2,ssum,,item,kene 2 ` P+ u2 ^+ `9 f% z) C7 n% C
*get,freqval2,mode,2,freq
& r7 ^" ] E9 weigen2=(2*3.14159*freqval2)**2
0 u( T7 D6 Q5 W0 N4 @7 F+ }pmass2=2*keneval2/eigen2
% L0 p6 n/ S: `5 u3 Wfinish |
|