|
Ansys里模态质量矩阵的提取方法
+ c8 @* J* S3 O* _4 Q; b模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下:
! [! i" E2 |# i( F o3 y1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω) $ |% A8 J, @& m0 \5 f' p$ n
2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。
1 A; A. T9 j6 _! C& g$ G下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子:
) {- J" G" ?: C4 _/PREP7 . D% m7 t0 ^7 i/ Y
/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM
5 p, ~, P" F. o6 b! V% vC*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2
; D& K( g# G4 m6 GET,1,COMBIN14,,,2
4 G* S9 ^! O/ D' F, O( IET,2,MASS21,,,4
0 ?& J& N, S1 P- NR,1,200 ! SPRING CONSTANT = 200
: F& g4 j9 k# ^0 X: m, ~! q6 Q. |R,2,800 ! SPRING CONSTANT = 800 ; N) `: ^% b1 m
R,3,.5 ! MASS = .5
]' P d1 A0 g9 k f1 eR,4,1 ! MASS = 1
# c- n+ g# u! u4 S* ? n, N( g* WN,1 / m! M. M B7 H5 a! T+ q/ [- \
N,4,1
- C. |! P4 k: u+ M" jFILL ; p, d% L1 s5 V( |! J# A! d/ _+ F' |
E,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
; ]3 Z1 M$ U4 n- a1 g. Q9 Z& ^TYPE,2 ! ^9 R6 ?/ Q5 x: E; v
REAL,3
& _1 K& Y" k' yE,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3) 1 M3 l9 j3 X% J$ v" L: F8 R( Y
TYPE,1 1 E& T! ^4 B. ~7 B- ]' _
REAL,2 : `' n; {, b2 n7 \8 i* F
E,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2)
! W& ?9 N0 R' X/ u0 B2 g$ vTYPE,2 # E! O- D7 X) N: L" g4 V
REAL,4
5 A0 @% _! L# wE,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4) , x/ X" v1 ]6 S7 R
TYPE,1 2 G' Z8 h n1 W9 v4 K
REAL,1
8 n* z5 U3 }) ]0 Q3 b. R$ lE,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
5 ?7 ^; b8 C9 j9 L$ wM,2,UX,3 ]( B) v4 v( x# r
OUTPR,BASIC,1 ( N; n. X' I& s: U P) \
D,1,UY,,,4 7 V4 K9 Y1 v# m8 o) [$ p8 r
D,1,UX,,,4,3 ; v2 L5 ?1 M/ w, h& D
FINISH 5 ~! n9 `7 C. L! m& R
/SOLU 7 I5 W4 b7 E6 g- B
ANTYPE,MODAL ; h5 Q8 W3 I$ X# P+ a
MODOPT,subspa,2,,,2,ON
7 J X- h& O1 n- n. `+ WMXPAND,2,,,YES
0 d/ q0 s4 V: H) _5 l( S4 I" CSOLVE
9 B8 d% D) q8 e% pFINISH & @2 C. M# |5 b# Q4 o$ x. F5 o1 N
/post1 0 J* i1 [; p9 m/ x* z* S+ { ]+ J7 O8 Y
set,1,1 * Y2 I' g# E# N7 L2 c3 G
etabl,kene,kene
5 u4 V8 o8 Z* U1 L' h1 v9 ~) b8 }ssum * W c. X! ]& q. A: E9 n
*get,keneval1,ssum,,item,kene
: }/ f% v" m% A5 p$ H0 ^*get,freqval1,mode,1,freq
" _* K6 D8 a+ y. k; weigen1=(2*3.14159*freqval1)**2 4 t" U7 e9 S. [
pmass1=2*keneval1/eigen1 " _; L/ T2 E. P( d! |: R9 ]
set,1,2
9 |5 E- b9 W7 d* eetabl,kene,kene 9 l4 V+ e" C" Q- o7 T( Z
ssum + e5 \8 y' y# j- [* X+ P$ K! A
*get,keneval2,ssum,,item,kene - F: W5 P/ d* r2 L+ }
*get,freqval2,mode,2,freq
4 u" s- X! c3 Y0 G( Z( h+ V7 V- feigen2=(2*3.14159*freqval2)**2
) ?8 t4 K0 c' [: H; {9 J$ lpmass2=2*keneval2/eigen2
6 S7 }1 P0 B+ r4 ?# _( _finish |
|