|
Ansys里模态质量矩阵的提取方法
' `1 M7 ?- R/ @2 F1 J2 S- z" `5 N- b模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下: F7 T+ I5 M( K& T) E/ _$ E6 f
1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω)
6 ]" X/ {" N' [! \% @+ N) O2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。
0 u* T3 b6 H; g1 N# ^下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子:
% v& S4 d9 t* J1 x' b/PREP7
5 @) c$ N# A' m0 y/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM
3 y( C4 E& S5 D& ~* I0 uC*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2 q+ r: T ?- ~& n( M
ET,1,COMBIN14,,,2
% x1 ~3 @ p/ \; J- w$ gET,2,MASS21,,,4 * {$ ^1 h5 k! B( A! X* g8 @2 j$ \
R,1,200 ! SPRING CONSTANT = 200 : N3 ?$ e4 ~" d! _# r$ s" ~: i
R,2,800 ! SPRING CONSTANT = 800 ( H0 G: z5 G2 ^ I% [. n
R,3,.5 ! MASS = .5 * \, I% ^: ], w- E
R,4,1 ! MASS = 1
$ ~/ q* S5 I# z+ J! m+ F: `9 qN,1 4 M1 w+ f! p4 L
N,4,1
. U% G6 l3 J4 M6 O! IFILL " h5 }/ k& ~: s K+ n( R
E,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1) 5 s# f$ i" B: d" J9 M: L2 j
TYPE,2 9 r; h) o7 b1 J9 f, K2 Y$ k" L! \
REAL,3 1 e, E9 W- L" |! ~7 R' k; O
E,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3)
0 l" i# [2 |1 c6 V! [+ l6 YTYPE,1
/ E2 I5 F ^* e1 i" }, s$ q+ u, hREAL,2 " L* }: r" g- S& w/ Z. s
E,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2)
+ Q k' o/ y! i+ e5 HTYPE,2
: J2 |* F0 c6 |1 }' U/ iREAL,4 3 t- Q+ w4 i; q+ C/ w: ~: W
E,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4)
8 \* m8 E u% @TYPE,1
& x' v0 z3 V- [' a0 e0 w& v5 XREAL,1
' r2 g& H% y: c# r! NE,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
5 l0 T# [6 d* X# K+ ^4 zM,2,UX,3 3 I2 E% e" D: V4 b5 J. x
OUTPR,BASIC,1
2 C3 |# J2 b: o; O9 WD,1,UY,,,4
- w* t6 r" L! W2 z4 P2 MD,1,UX,,,4,3 # Y$ f2 a8 o5 ~5 [1 K, N
FINISH
2 d. H& L2 Y9 t/ h4 k+ {9 K. i/SOLU 3 V2 B1 f- z# _* K M" ^6 p2 Q
ANTYPE,MODAL
2 M [; F7 u0 E+ n, n8 O) cMODOPT,subspa,2,,,2,ON 8 O" j* r3 o( d1 a' p
MXPAND,2,,,YES ) J" l% v- m2 j# ~/ p/ v
SOLVE 1 Q% c8 f. ?9 G7 `( E, f
FINISH ' F9 F; M' a; G) M* w3 l7 S3 X7 ?
/post1 ! ?; p# M1 r8 _$ p* t, L
set,1,1 % t4 e: i# z% w/ H3 ]8 E3 Q
etabl,kene,kene 8 x+ L& V6 a1 E
ssum ( M; Q! t9 q5 ^+ V2 D7 b
*get,keneval1,ssum,,item,kene
- n' z" ~, x: Z" X*get,freqval1,mode,1,freq * [" p, ]0 g3 ^
eigen1=(2*3.14159*freqval1)**2 ' Q; q! r8 j; V U
pmass1=2*keneval1/eigen1 8 @9 b1 O9 s' I. m/ _8 o9 V [
set,1,2 ; u8 [- J# c- O. B3 P( C+ v: e
etabl,kene,kene
% |3 t: b6 r! F; Bssum
% A4 Q! j& n5 S& }*get,keneval2,ssum,,item,kene
! x. f. b/ V- E& l8 P8 A0 j*get,freqval2,mode,2,freq
7 s# i4 T2 R+ [7 Seigen2=(2*3.14159*freqval2)**2 ) O6 _# q! I3 f) C& A/ R# K- x
pmass2=2*keneval2/eigen2 5 S' q: X* ~1 T5 v! [/ }: B
finish |
|