|
Ansys里模态质量矩阵的提取方法
& N7 N5 m H& n; }& H: [模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下:
2 H/ r) m* ?2 b0 f0 Q* h1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω) 0 ]+ f# Y$ n: ^; B4 K7 b" c, y i$ _
2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。 7 L% I$ U7 ?# l( p* u& D2 `
下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子:
- W8 F/ ^# N$ k& w/PREP7 5 R, w+ q' X+ m8 ~* U( z8 q
/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM . Z, K$ x, L! g, i9 X
C*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2
, f( y8 K5 G1 ?1 NET,1,COMBIN14,,,2
# t; V/ ?5 B, p* _( T) N- M" ZET,2,MASS21,,,4 ! G3 l; A: L: d! s: k E
R,1,200 ! SPRING CONSTANT = 200
8 Q2 u i% }' h6 U; lR,2,800 ! SPRING CONSTANT = 800 * @5 R- A+ I* [
R,3,.5 ! MASS = .5 9 S! W _' J' G& I8 r
R,4,1 ! MASS = 1 0 |' [3 F% ^) L$ S
N,1
- J2 g( G9 G' O# f4 j. ~N,4,1
B8 x* ^7 a3 v- G( f! DFILL
2 k, V1 h( q6 U. fE,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
5 [, l" c' B( I- [* v) ~/ tTYPE,2
% l9 Q& m2 b9 B6 b4 A) HREAL,3
8 i; ` D& o* ^2 YE,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3) $ E! R$ v( K% @0 m, |
TYPE,1
3 Q7 D4 k- i7 X6 \% H0 AREAL,2
7 V7 K; H5 R3 s4 L! o6 m9 u: TE,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2)
& S4 U" R. R, ^6 P9 L b$ p) S* D0 oTYPE,2 . }4 n0 C/ |" C+ U$ V% n1 N4 N4 t
REAL,4
: o( O# j+ Y; q! BE,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4)
$ G# u3 |: Z/ f4 }TYPE,1 e, C' Z) o& v, _
REAL,1
5 W$ j0 P' W4 eE,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
4 B! ~, ]% H1 f% o* _9 \M,2,UX,3
) D7 u# [7 @3 ?, H& ], L. z( KOUTPR,BASIC,1
) x G! [3 A& G: ^7 UD,1,UY,,,4
( J7 @6 v, Y8 [. V" w4 qD,1,UX,,,4,3 ( K- v9 X9 T/ ^' t" _# t( i
FINISH . v- A/ f. Q! J# S, b- v( |+ G
/SOLU 7 x( b. T$ ^4 F+ Y
ANTYPE,MODAL
" @. C4 A- Y/ ?: e4 P+ c: jMODOPT,subspa,2,,,2,ON 9 Q6 M9 d6 L' o' ]+ n1 d
MXPAND,2,,,YES " R Y% Y. n; h$ h( V1 o
SOLVE 6 V% u0 j6 Y% m, S" O, ]+ c
FINISH 3 b3 \9 s# Z+ ]: H a" I/ j
/post1 1 y! ~& f' b) `4 {+ x( k; c
set,1,1 - ~1 C$ ^1 E- W& C' I2 {
etabl,kene,kene . ^. N' c3 X) n9 r" Z( a: D
ssum
. v+ a H% {0 ~. k5 E6 k$ q8 n*get,keneval1,ssum,,item,kene
1 `+ r. p8 t8 t) L+ w/ t*get,freqval1,mode,1,freq 7 z- _1 i+ `3 f1 B+ W( G
eigen1=(2*3.14159*freqval1)**2 $ [# m+ A9 U: t( L! m4 ~
pmass1=2*keneval1/eigen1
* [7 F# P$ x9 Z( u9 a$ W) [0 A! bset,1,2
# D) ?1 Q Q: K0 z& Aetabl,kene,kene 8 \& M3 S) A# `2 N- i) K4 E9 T
ssum
8 r* U+ G) y9 u*get,keneval2,ssum,,item,kene * s2 K7 x5 W5 B, H! P' Q
*get,freqval2,mode,2,freq 7 s4 ~! u" m: ?9 T, V
eigen2=(2*3.14159*freqval2)**2 % a( V e' x/ {% j8 S+ l" r7 m1 K
pmass2=2*keneval2/eigen2 % r7 w% R* [' I/ |+ y7 n
finish |
|