|
Ansys里模态质量矩阵的提取方法& V1 k& v: b2 \- L3 c
模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下:
4 o- `; E+ h' a1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω)
, i. ~7 }$ N$ y0 `2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。
: [6 T" R7 U3 K' s9 r' A- D( \* `' [下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子: ( y- N" b( s; d& r( E' E8 D2 l
/PREP7
" R( P5 i6 P: [( K/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM s7 _7 x6 N" \. s% m
C*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2
- S) N4 K$ k7 ?; M8 RET,1,COMBIN14,,,2 4 l! z7 c* H# {4 t o3 m$ Q l
ET,2,MASS21,,,4
& M) _5 y8 R/ v6 x* L, aR,1,200 ! SPRING CONSTANT = 200 9 c- p N$ e" {2 h8 X2 X' G
R,2,800 ! SPRING CONSTANT = 800
5 e# S- Z& ^+ n! |5 t/ b6 |R,3,.5 ! MASS = .5
; F5 d1 p# ?- j4 P7 Y5 a$ i/ H6 FR,4,1 ! MASS = 1
5 s% F/ o+ _. y( gN,1
1 ^1 l# Y( F y% Z& T" L) P1 x$ \, qN,4,1
$ I5 W3 @" Z$ ]5 D$ oFILL : w; g6 w0 O+ G8 N& ]" J8 v F
E,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
# E1 c% v, l+ Q3 s, P* C r2 ~TYPE,2 & H% I$ H" e! Z: s* t: L6 S
REAL,3 ' d- L% a) J. v
E,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3) - `# _6 X! ]! c, h
TYPE,1 ' A, d+ I( b# K6 [% t% b; ]
REAL,2 5 ?- [0 [: Y8 v6 b% }2 W
E,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2) " L. Y/ t4 H/ j& e7 i% {, R. A
TYPE,2 ; D" m! o- u& x2 T' h9 M# c
REAL,4
" B2 W7 Y7 J/ E5 P4 iE,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4) - O5 z E, Y( X- t# D
TYPE,1
$ _; U' ?% Q9 S5 e$ jREAL,1
, _7 l. f$ K0 XE,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
~5 }- K# n/ `' OM,2,UX,3
1 A% P4 H% ]0 r5 K" a, [OUTPR,BASIC,1 3 }% N* _2 g/ q& a
D,1,UY,,,4
/ D- v: h$ v" C4 o5 A3 XD,1,UX,,,4,3 {) ]7 x( d& J
FINISH
5 _% `( {- M$ T- E1 ^/ E/SOLU / b/ X8 M$ O3 o/ Q; d' P! K( ~
ANTYPE,MODAL 9 r# j; K7 o& p+ o5 C* u2 A
MODOPT,subspa,2,,,2,ON
* C1 j0 K/ \) A- s- Q* UMXPAND,2,,,YES
' F8 x, S6 Z* o7 p/ A# U5 W* LSOLVE
% k6 i+ ~ m8 ]: P6 ?+ q" ?FINISH
+ @4 m7 N: c; l$ B+ `/ `/post1
+ {# x4 c: I2 Y- E+ w1 Zset,1,1 # `8 ~5 [; ?2 ?3 R3 b
etabl,kene,kene 1 k, C4 H3 y7 D2 |- k- G+ k
ssum 3 |; w# f4 @- c3 m, k
*get,keneval1,ssum,,item,kene ( Q/ W8 ~) _, H$ @3 a
*get,freqval1,mode,1,freq " p! O6 L/ W$ \1 A
eigen1=(2*3.14159*freqval1)**2 ! S& b3 i. D7 o( t' y* i
pmass1=2*keneval1/eigen1 5 h: f1 R- l$ h u: o8 h
set,1,2 7 @; N! V, k- U
etabl,kene,kene % e! Q1 b8 Z8 G
ssum
: S' u6 D* h6 q*get,keneval2,ssum,,item,kene : N* `% N7 }/ k! e, u- E# d/ S% A0 r4 k
*get,freqval2,mode,2,freq 9 l/ Z- A0 Y; D* }- A1 k
eigen2=(2*3.14159*freqval2)**2 . \! R4 Z3 r3 j3 l9 E5 R
pmass2=2*keneval2/eigen2 * K) Y6 C, ^( w6 Z4 F
finish |
|