|
模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下: - P: p9 W$ Z. T: n. z
1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω)
! x' f; r. `+ A* _% N! Z$ l2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。
" E7 |( n4 k w/ x+ b下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子: : X t- q% o/ A+ h
/PREP7
' D4 L! \5 W4 f# ^4 R- P/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM ; @, l+ ?2 Q& b/ v. N
C*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2
4 t, w7 @+ y, KET,1,COMBIN14,,,2
( [& W- {( F, o. A1 L5 yET,2,MASS21,,,4 * l" c, X/ | E! U( y. T0 S2 [( g
R,1,200 ! SPRING CONSTANT = 200
& Q3 O- M0 e$ \& HR,2,800 ! SPRING CONSTANT = 800
& _5 ?9 \, [, ]R,3,.5 ! MASS = .5
3 R) f6 K2 e z; RR,4,1 ! MASS = 1
( t$ J' ^2 p0 s( [: [9 P: G V4 s/ E) x( bN,1 - c, w' @, D8 J! |
N,4,1
: f8 D0 s4 T i { GFILL
6 c9 x+ B, \! X2 A) F1 mE,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
# |: }! y2 U: a" k2 t- JTYPE,2 : W( @' o8 _4 Z* w- T0 b e9 _8 g
REAL,3
$ X( ]4 W$ k) u# R" `* U0 M5 \E,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3)
6 k7 V$ N$ N4 d9 c' P1 uTYPE,1
6 w3 w; Z! Y. x% uREAL,2
* q; t0 G3 a) J+ f+ A9 X6 sE,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2) 1 ]' _% D; j% c2 k7 A, a: c
TYPE,2 0 i- f2 w8 k. w
REAL,4
) @* z; j( U$ M% W$ }$ p" [E,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4) / q1 A6 _4 Y+ d7 s( h
TYPE,1
$ [; B; ?8 ?3 W& ]; ?- |+ IREAL,1
+ s) t" A ?4 V( g. H* [( `; JE,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1) % d+ S; j. ?9 D
M,2,UX,3
' w8 Q. f( s9 g5 UOUTPR,BASIC,1
}3 Z, i( i; n* Z* x% Z6 k3 c9 ?1 XD,1,UY,,,4
% N3 v; ?- e" X0 B' i$ @D,1,UX,,,4,3
; S. F7 O& q0 _1 y& I6 l8 CFINISH
. `# o* R+ Q7 P8 \1 \7 o/SOLU 7 T7 I% C3 A* D5 D6 p' P) H
ANTYPE,MODAL 0 \! Z. q! {' W* J4 R+ w" g0 N
MODOPT,subspa,2,,,2,ON
- S2 x& Z* G$ I; `( cMXPAND,2,,,YES
2 b. P' Z' L4 ?, A5 v' u. NSOLVE - ~3 |- N* m- F# Y% W: |* I
FINISH
: P+ \; @! h0 S0 O1 F0 U! h/post1 3 J+ l, V1 Z8 ^1 a2 E4 T
set,1,1
K% l j# M `% Z/ _ `: V6 K" Petabl,kene,kene . N+ R# Z* U+ I" W2 ]5 |8 n
ssum , i6 z1 ]( _9 [8 y! n1 |* j
*get,keneval1,ssum,,item,kene
2 X; M" Y; \0 U& J$ H i*get,freqval1,mode,1,freq
& H b7 `3 N4 e' K+ p8 e0 deigen1=(2*3.14159*freqval1)**2
: D- \0 G8 B ^1 v( F! kpmass1=2*keneval1/eigen1
% e7 a& l# P* A3 F& fset,1,2 : j* a* r5 K4 x; ]+ r$ I
etabl,kene,kene ; f6 \* g- x5 t/ ^. ~: }$ i$ A
ssum ; [3 ?) K' t# S0 f
*get,keneval2,ssum,,item,kene ( c$ i: U0 l1 ^. {
*get,freqval2,mode,2,freq 0 B; X# p6 Z2 `4 }, T
eigen2=(2*3.14159*freqval2)**2 3 J0 m2 K- @0 s9 G
pmass2=2*keneval2/eigen2
/ H' a9 }, d* ]' y% e3 |, xfinish |
|