|
模态质量矩阵的提取方法,请大家分享:模态分析过程中打开振型型则化开关(MODOPT命令的Nrmkey设置为ON),ANSYS程序将自动将每阶模态的最大位移单位化,就可以提取模态质量。计算方法如下:
+ [7 r" L1 {8 u4 ^# n Q( C1、利用SSUM对ETABLE 动能数据求和获得结构总动能( 1/2m*ω*ω) : q# o% z) K v9 w3 _9 x; S3 U9 U0 \
2、将结构总动能除以1/2m*ω*ω得到m ,其中ω 是系统的角频率。
4 y9 P: ^% c6 P4 L1 `下面是《ANSYS Verification Manual》中VM89.DAT稍加修改后提取模态质量的例子:
2 J0 v# c' q% q5 J! d2 L/PREP7 1 i' w v+ j$ E
/TITLE, VM89, NATURAL FREQUENCIES OF A TWO-MASS-SPRING SYSTEM ; ^/ |7 t( }: S: }7 S0 s
C*** VIBRATION THEORY AND APPLICATIONS, THOMSON, 2ND PRINTING, PAGE 163,EX 6.2-2 ! J( ^3 c% J% ^# z) `
ET,1,COMBIN14,,,2 7 ^* H9 Y1 D! C8 f0 U$ A7 t$ ?
ET,2,MASS21,,,4 2 c }- X# S2 L u- E7 {& _7 \
R,1,200 ! SPRING CONSTANT = 200 + k% q6 J) ^0 G6 Z
R,2,800 ! SPRING CONSTANT = 800
7 D/ X8 P- |% O) Z& A: CR,3,.5 ! MASS = .5 6 _2 ^( J, h+ V8 P% x
R,4,1 ! MASS = 1
- \4 X* M# }% jN,1
: B" l+ ?3 k! P9 A" C, ~N,4,1
* m6 T7 ~/ v4 e. u2 cFILL
0 T$ w+ P+ T# ^3 N9 m! DE,1,2 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
% p- ^! n: v d! T. U# jTYPE,2
6 g) z1 c0 I# L- T( F5 iREAL,3
5 r% q# k6 k% s4 l6 TE,2 ! MASS ELEMENT (TYPE,2) AND MASS = .5 (REAL,3) 4 w0 q5 J; G& @$ k
TYPE,1
4 A2 o& Y: [; V$ xREAL,2 7 y- V: r& n0 Y9 Z
E,2,3 ! SPRING ELEMENT (TYPE,1) AND K = 800 (REAL,2)
9 V9 n0 O2 g+ ?. c( @% r/ JTYPE,2 8 s8 V& k7 v* S7 o# x3 P, m
REAL,4
' p4 ^) O+ R JE,3 ! MASS ELEMENT (TYPE,2) AND MASS = 1 (REAL,4)
, G, p5 d' w/ e4 ~# l! gTYPE,1 " r6 M3 c' H/ V: O2 b' {4 a
REAL,1 ! e( B/ R* ~! D% k1 R- y: h
E,3,4 ! SPRING ELEMENT (TYPE,1) AND K = 200 (REAL,1)
8 r; G/ l) Y. ]- O; U# dM,2,UX,3 # }( @/ h, }4 s& V
OUTPR,BASIC,1
% p1 ?/ h4 k7 C' A4 }7 M E( |D,1,UY,,,4 6 @' h( h. Q O
D,1,UX,,,4,3 ; D; b) u% m5 b
FINISH
6 l( S' p; P W$ G; a- c/SOLU
$ A' z2 F; i) `# O& L& ^: Q/ S* ?ANTYPE,MODAL
# C5 f% v) [: M7 l9 s. j) KMODOPT,subspa,2,,,2,ON - L# }1 f7 r1 X) [8 _
MXPAND,2,,,YES
: T1 m5 d$ d; d& N E/ JSOLVE
3 f/ m3 i' f0 M( i. qFINISH ! |9 g ~# q; a: u
/post1 7 ~& m8 `6 @; e$ m/ u f" t
set,1,1 " s( [5 ~9 ?" t9 P4 _- `) f( f3 F4 m
etabl,kene,kene
. n3 y! i2 m- ^$ Y6 s L c8 wssum
& o, ~9 K( k, @& ?*get,keneval1,ssum,,item,kene
l$ W+ D/ N% t8 ?' E2 e; t2 o*get,freqval1,mode,1,freq # o4 }" F8 n9 {" k5 L, n$ A" Q( v
eigen1=(2*3.14159*freqval1)**2 ) g7 {6 L7 w1 n0 c. ]5 _: L2 G1 I; ^
pmass1=2*keneval1/eigen1 4 m {8 W* M( O
set,1,2
2 y! W: i A( v) W" S) j9 P" getabl,kene,kene
R9 F/ Z4 U/ M1 d; F) o2 Pssum # ]7 s& P. K8 @9 ]% Z
*get,keneval2,ssum,,item,kene S& S l7 h' A
*get,freqval2,mode,2,freq
7 H3 a, s. v" T" p% n/ v, f$ peigen2=(2*3.14159*freqval2)**2 # N9 e; p; Y: t
pmass2=2*keneval2/eigen2
; A# e# e/ j: j/ P& R% V0 Bfinish |
|