——经典智力题推而广之一
& ?5 D+ r* L$ R! D4 B (本帖改编自《科学美国人》杂志中IanStewart的《凶猛海盗的逻辑》)
( @/ l& N" A4 i5 }' e" x9 v4 x2 p6 o4 M' e2 E! S! F ]
海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。 ! ?; l8 T! X% s; G" M
) m8 Z: ?9 r% v# |
现在船上有若干个海盗,要分抢来的若干枚金币。自然,这样的问题他们是由投票来解决的。投票的规则如下:先由最凶猛的海盗来提出分配方案,然后大家一人一票表决,如果有50%或以上的海盗同意这个方案,那么就以此方案分配,如果少于50%的海盗同意,那么这个提出方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶猛的那个海盗提出方案,依此类推。
2 L9 x0 y1 i4 k b/ {! S# O7 y/ P; G" [1 F
我们先要对海盗们作一些假设。 4 p* d1 |" g! S5 f
& j D0 n& P) K
1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私底下的交易是不存在的,因为海盗除了自己谁都不相信。 ' _ a4 R& j! u; E" z. g# l
2) 一枚金币是不能被分割的,不可以你半枚我半枚。
9 Q7 V5 f2 Q+ e 3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。 ' G% Q6 V! ^# D7 I) i
4) 每个海盗当然希望自己能得到尽可能多的金币。 7 z! t9 z1 o, L0 n3 r
5) 每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。 1 h1 R8 Z. W/ q" I4 q
6) 最后,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。在不损害自己利益的前提下,他会尽可能投票让自己的同伴喂鱼。
' ^: K h# N' ?! a/ R: ~4 m
- a1 A! z' o9 [" ~& @; U8 m) @ 现在,如果有10个海盗要分100枚金币,将会怎样? [eWebSoft_NextPage] h& g# R+ H! d" |2 v! d' `
7 Z. I6 o5 t& m- h/ k7 b% Z
要解决这类问题,我们总是从最后的情形向后推,这样我们就知道在最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可以得到最后第二步应该作怎样的决定,等等等等。要是直接就从开始入手解决问题,我们就很容易被这样的问题挡住去路:“要是我作这样的决定,下面一个海盗会怎么做?” ~$ \4 x" ^8 u
3 C% o+ A! D. y) r! d
以这个思路,先考虑只有2个海盗的情况(所有其他的海盗都已经被丢到海里去喂鱼了)。记他们为P1和P2,其中P2比较凶猛。P2的最佳方案当然是:他自己得100枚金币,P1得0枚。投票时他自己的一票就足够50%了。
$ r" _* A0 V' r- P9 u2 [6 ?. q7 y- }& U6 c9 ?8 h
往前推一步。现在加一个更凶猛的海盗P3。P1知道——P3知道他知道——如果P3的方案被否决了,游戏就会只由P1和P2来继续,而P1就一枚金币也得不到。所以P3知道,只要给P1一点点甜头,P1就会同意他的方案(当然,如果不给P1一点甜头,反正什么也得不到,P1宁可投票让P3去喂鱼)。所以P3的最佳方案是:P1得1枚,P2什么也得不到,P3得99枚。 9 @$ h3 A* c) |% w! V4 [
' [$ c2 P: z0 n- w( m6 w6 }
P4的情况差不多。他只要得两票就可以了,给P2一枚金币就可以让他投票赞同这个方案,因为在接下来P3的方案中P2什么也得不到。P5也是相同的推理方法只不过他要说服他的两个同伴,于是他给每一个在P4方案中什么也得不到的P1和P3一枚金币,自己留下98枚。 ) V& }, {; _1 @/ f$ N
& H) {$ r# w. D# ]
依此类推,P10的最佳方案是:他自己得96枚,给每一个在P9方案中什么也得不到的P2,P4,P6和P8一枚金币。 7 Z& Q8 D% K8 ^1 R5 q+ m6 K
) n2 g, l( \! h' Q* T9 o- g
下面是以上推理的一个表(Y表示同意,N表示反对): & \! m/ U; _1 _! b. j/ C
) m- z/ {5 W1 k/ i. V. g P1 P2
) _* w0 q, s$ t9 J: T% j2 O4 r 0 100
7 k$ _, X& [+ X; O8 l; |( V N Y $ w7 Y. N9 w/ [ `+ \ x {
- |: I7 D& M/ Y! N6 p P1 P2 P3 : ]1 k/ y, R! M- e
1 0 99 6 R+ Y& E/ t7 s: k4 P
Y N Y
1 M8 K4 f9 [2 n! E D" X
7 E0 h- p/ X, s" r9 s6 {7 H P1 P2 P3 P4 / n/ [4 [' P' B0 j( u3 P
0 1 0 99 ' J; d) |' j/ v# u7 L' C: N
N Y N Y
# ^4 E* M# R! q5 T$ S3 p
, _1 _: n$ @9 g5 Q P1 P2 P3 P4 P5
* C2 q2 ^' q5 B' C 1 0 1 0 98
+ |) i/ J" i3 w: h8 N Y N Y N Y 4 [0 h2 E% a' _- \0 v, n
: o" f; l9 I8 \
…… 5 S. s3 _ j" Z T6 `: X% Z
( i3 W, Y3 l. E$ u
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0 A7 D# p! n: _- P 0 1 0 1 0 1 0 1 0 96
% t9 G; z; n; e+ F/ k( b N Y N Y N Y N Y N Y % A- W+ a2 s# M0 }* }& D! Y+ v, } v
[eWebSoft_NextPage]
) x2 t& O! ?1 E# d8 l9 D q0 c2 X' v+ {9 ~0 J6 A
现在我们将海盗分金问题推广: " z& j% V+ l3 p4 K
2 p7 q# ]( d3 v& G+ ~$ m/ k 1) 改变一下规则,投票中方案必须得到超过50%的票数(只得到50%票数的方案的提出者也会被丢到海里去喂鱼),那么如何解决10个海盗分100枚金币的问题? ; x5 ]* C; T! y& o7 z& N4 d/ T* w
2) 不改变规则,如果让500个海盗分100枚金币,会发生什么? ' ]6 x+ e3 @& `, s
3) 如果每个海盗都有1枚金币的储蓄,他可以把这枚金币用在分配方案中,如果他被丢到海里去喂鱼,那么他的储蓄将被并在要分配的金币堆中,这时候又怎样? + w# F6 @$ S- E7 t' U R! ^ z
& f q) v( Q) f* U! a0 N
通过对规则的细小改变,海盗分金问题可以有许多变化,但是最有趣的大概是1)和2)(规则仍为50%票数即可)的情况,本帖只对这两种情况进行讨论。
$ d' Q9 W3 H8 z3 h2 J& Q: N: c! E( n7 k' \
首先考虑1)。现在只有P1和P2的情形变得对P2其糟无比:1票是不够的,可是就算他把100枚金币都给P1,P1也照样会把他丢到海里去。可是P2很关键,因为如果P3进行分配方案的话,即使他一枚金币也不给P2,P2也会同意,这样一来P3就有P2这张铁票!P3的最佳方案就是:独吞100枚金币。
$ a7 O# e" O! }8 E8 l* [3 @; o$ g' |; {) g) L0 W# V
P4要3张票,而P3是一定反对他的,而如果不给P2一点甜头,P2也会反对,因为P2可以在P3的方案中得救,目前为什么不把P4丢到海里呢?所以要分别给P1和P2一枚金币,这样P4就有包括他自己1票的3票。P4的方案为:P1,P2每人1枚金币,他自己98枚。 # @$ N# N$ @ g5 _! v
! L( S @( M2 J: M* `5 |0 p
P5的情况要复杂点,他也要3票。P4是会反对他的,所以不用给,给P3一枚金币就能使他支持自己的方案,因为在接下来的P4方案中他什么也得不到。问题是P1和P2:只要其中有一个支持就可以了。可是只给1枚金币是不行的,P4方案中他们一定有1枚金币可得,所以只要在他们中随便选一个,给2枚金币,另一个就对不起了,不给。这样P5的方案是:自己97枚,P3得1枚,P1或P2得2枚。
7 K$ [5 o4 D$ G: ~0 x9 Y& ~+ X9 I
/ V* G$ P$ i0 U( f+ B P6的方案建立在P5的上面,只要给每个P5方案中不得益的海盗1枚金币。要注意的是,P1和P2都应该看作在P5方案中不得益的:他们可能得2枚,可是也可能1枚不得,所以只要P6给他们1枚金币,根据“二鸟在林,不如一鸟在手“的原则,就可以让他们支持P6的方案。所以P6的方案是唯一的:P1,P2,P4每人1枚金币,P6自己拿97枚。
2 I1 G r, u# P$ e6 e! }
- x' ] D( ~) d0 H" X 这样继续下去,P9的方案是:P3,P5,P7每人1枚金币,然后在P1,P2,P4,P6中任选一人给2枚金币,P9自己得95枚。最后,P10的方案是唯一的:P1,P2,P4,P6,P8每人1枚金币,P10自己得95枚。
) ~6 U; {6 g" }! k( G* Z( b
: C) d, R9 F7 z8 R% Q% S% { 2)是最有趣的(提醒:我们回到50%票即可的规则)。原题解中的推理过程直到200个海盗都是成立的:P200给每个偶数号的海盗1枚金币,包括他自己,其他海盗什么也得不到。从P201开始,继续推理就变得有点困难了:P201为了不被丢到海里去,必须什么也不留给自己,而给从P1到P199中所有奇数号海盗每人1枚金币,从而争取到100票,加上他自己1票,逃过一劫。P202也什么都得不到,他必须用这100枚金币买通100个从P201的方案中什么也得不到的海盗,要注意到现在这个方案不是唯一的:P201的方案中得不到金币的海盗是所有奇数号的海盗,有101个(包括P201),所以有101种方案。
, f9 _5 f+ Y) `+ W" C3 I2 d# r* k& ~: N) x
P203必须得到102票,除了自己的1票外,他只有100枚金币,所以只能买到100票,所以可怜的家伙就被丢到海里喂鱼了。但是,P203是个很重要的角色,因为P204知道如果自己的方案不被通过,P203也一样会完蛋,所以他有P203的一张铁票。所以P204可以大出一口气:他自己一票,加上P203一票,然后加上用100枚金币买的确100票,他就得救了!100个有幸得到1枚金币的海盗,可以是P1到P202中任何100个:因为其中的偶数号的从P202的方案中什么也得不到,如果P204给他们中某个海盗1枚金币,这个海盗一定会赞同这个方案;而编号为奇数的海盗呢,只是有可能从P202的方案中得益罢了(可能性为100/101),所以根据“二鸟在林,不如一鸟在手“的原则,如果能得到1枚金币,他也会赞同这个方案。
0 r" [* i6 L/ f$ @
/ p/ Y) W# P9 b* a 接下去P205是不能把希望放在P203和P204这两张票上的,因为就算他被丢到海里去,P203和P204还可以通过P204的方案机会活下来。P206虽然可以靠P205的铁票,加上自己1票和100枚金币搞到的100票,只有102票,所以他也被丢到海里喂鱼。P207好不了多少,他需要104票,而他自己以及P205和P206的铁票加上100枚金币搞到的100票只有103票——只好下海。 . N' Q- d- a7 ?0 ?1 i7 J$ ~1 ~
* _$ W/ L( h! r l. E: ^) v' m P208运气比较好,他同样也要104票,可是P205,P206,P207都会投票赞成他的方案!加上他自己的1票和买来的100票,他终于逃脱了做鱼食的命运。
: v) ]3 Y% H w1 R+ B
/ r" C/ J9 F! p7 p7 t 这样我们就有了一种可以一直推下去的新逻辑。海盗可以什么也不留给自己,买上100票,然后依靠一部分一定会被丢下海的海盗的铁票,从而让自己的方案通过。有这样运气的海盗分别是P201,P202,P204,P208,P216,P232,P264,P328和P456……我们看到这样的号码是200加上一个2的次幂。 8 [/ k' e- V" r$ A, B5 ]
9 J$ y: k, i+ i3 }' w: H# T 哪些海盗是受益者呢,显然铁票是不用(不能)给金币的。所以只有上一个幸运号码及他以前的那些海盗才有可能得到1枚金币。于是我们得到500海盗分100枚金币的结论是:前44个最凶猛的海盗被丢进海里,然后P456给P1到P328中的100个海盗每人1枚金币。
2 w/ o& X R1 W4 T( N1 Y/ X: u6 {6 j D, I$ ]5 c: L0 g
就这样,最凶猛的海盗被丢进海里,而比较凶猛的什么也得不到,而只有最温柔的那些海盗,才有可能得到1枚金币。正如《马太福音》所说:“温柔的人有福了,因为他们必承受土地!” |