——经典智力题推而广之一 5 d# B" b+ b. b6 M- s
(本帖改编自《科学美国人》杂志中IanStewart的《凶猛海盗的逻辑》) ! E4 L% L. n7 h2 ]
9 a. u( k5 B" @$ Z
海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。 # @% N0 }% ?7 Z5 v: p
, t: v8 G/ T+ e8 F7 H 现在船上有若干个海盗,要分抢来的若干枚金币。自然,这样的问题他们是由投票来解决的。投票的规则如下:先由最凶猛的海盗来提出分配方案,然后大家一人一票表决,如果有50%或以上的海盗同意这个方案,那么就以此方案分配,如果少于50%的海盗同意,那么这个提出方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶猛的那个海盗提出方案,依此类推。
4 c0 C9 i. u7 y- g0 L; S) q7 m. C. G* o, {* R5 r9 s
我们先要对海盗们作一些假设。 1 m5 R' I D; p4 e4 |! G3 P6 e
* h3 o Z# A+ X+ Z 1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私底下的交易是不存在的,因为海盗除了自己谁都不相信。
1 C0 P+ r, j6 ]2 h! q; O; f" O* Z 2) 一枚金币是不能被分割的,不可以你半枚我半枚。 ! o* |2 A, L1 V; ?: c
3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。 % B4 B7 x/ Q' v4 s
4) 每个海盗当然希望自己能得到尽可能多的金币。
2 L8 e V9 N X( l" D: F F5 m 5) 每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。 . o e: T5 P2 g: J
6) 最后,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。在不损害自己利益的前提下,他会尽可能投票让自己的同伴喂鱼。 / @( T0 G k/ @; S$ Y
2 l4 ~' k! } m! | 现在,如果有10个海盗要分100枚金币,将会怎样? [eWebSoft_NextPage]% k' ~2 }6 D. r! `* T
, f9 ]9 ~; D% x. z! Z" k
要解决这类问题,我们总是从最后的情形向后推,这样我们就知道在最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可以得到最后第二步应该作怎样的决定,等等等等。要是直接就从开始入手解决问题,我们就很容易被这样的问题挡住去路:“要是我作这样的决定,下面一个海盗会怎么做?”
/ b* ~/ ~: h+ q/ Y0 @" K& T* r: A- t( E
以这个思路,先考虑只有2个海盗的情况(所有其他的海盗都已经被丢到海里去喂鱼了)。记他们为P1和P2,其中P2比较凶猛。P2的最佳方案当然是:他自己得100枚金币,P1得0枚。投票时他自己的一票就足够50%了。
: i" i& e) E1 Y# u
5 ~) X* l3 x9 A; J' z 往前推一步。现在加一个更凶猛的海盗P3。P1知道——P3知道他知道——如果P3的方案被否决了,游戏就会只由P1和P2来继续,而P1就一枚金币也得不到。所以P3知道,只要给P1一点点甜头,P1就会同意他的方案(当然,如果不给P1一点甜头,反正什么也得不到,P1宁可投票让P3去喂鱼)。所以P3的最佳方案是:P1得1枚,P2什么也得不到,P3得99枚。 , c4 a( m A; s5 K2 w% H
9 u8 P! l1 y+ ]7 V5 C1 {8 M' K
P4的情况差不多。他只要得两票就可以了,给P2一枚金币就可以让他投票赞同这个方案,因为在接下来P3的方案中P2什么也得不到。P5也是相同的推理方法只不过他要说服他的两个同伴,于是他给每一个在P4方案中什么也得不到的P1和P3一枚金币,自己留下98枚。 ! B0 q% f9 X* S$ x, O- k
6 Z; `" \5 {; ? _/ p+ b4 Q" K( Y5 D 依此类推,P10的最佳方案是:他自己得96枚,给每一个在P9方案中什么也得不到的P2,P4,P6和P8一枚金币。 + M5 U. N& N% ^& B$ }. p G$ ], _
; V$ F/ ]0 q. ^
下面是以上推理的一个表(Y表示同意,N表示反对): ; ?% B: c' B- o( F# i" \/ E. ^
% T! v0 t: h% J4 J
P1 P2 . A: k& [3 c# H/ P/ S, ^
0 100
6 q: N" y6 [- z' E0 h N Y & t C& Z" f0 }/ \$ E v
) |6 D% F* g+ z; K
P1 P2 P3
- c8 O Z; }" A) ]+ ] 1 0 99 4 O2 J1 u$ V# r( g3 O c1 f
Y N Y 2 X( E4 Z7 K8 X2 p u
1 o7 j4 V# A8 s
P1 P2 P3 P4 & `, J P n5 R: m, G4 d$ [3 D
0 1 0 99
* ~: T# Z! }' G' f5 ?, t6 [ N Y N Y ( L( J/ I4 y0 A7 z0 b! z0 J9 G9 S
& _' v X; L! Y; s P1 P2 P3 P4 P5 " J6 r! b$ M0 r( ]4 w
1 0 1 0 98
% g6 ~4 F% [2 w$ o0 M Y N Y N Y & Z8 H9 `! {7 x; m
* n' e9 v4 U* z, @2 |+ Z# r; S5 U; \ ……
B. W/ H* T/ L! ?& v9 O7 b* h- X* Z2 v* K
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 ?7 \3 F! \8 ?! n# N: E0 [4 ]
0 1 0 1 0 1 0 1 0 96 / U2 g# Q; D9 W# e7 P
N Y N Y N Y N Y N Y
: V1 I. G. F( A3 @! t3 Q[eWebSoft_NextPage]
4 i# I$ a. F9 k" B# g6 X6 _; Z& G" U8 J: u- R. M% d- @8 E1 i* B
现在我们将海盗分金问题推广: ; t! j. p/ `% _( d
4 y; o: f4 a* r 1) 改变一下规则,投票中方案必须得到超过50%的票数(只得到50%票数的方案的提出者也会被丢到海里去喂鱼),那么如何解决10个海盗分100枚金币的问题?
7 b# f U/ `- I 2) 不改变规则,如果让500个海盗分100枚金币,会发生什么? ' S# u( i" B( [. ~% E! H; ?3 m% @
3) 如果每个海盗都有1枚金币的储蓄,他可以把这枚金币用在分配方案中,如果他被丢到海里去喂鱼,那么他的储蓄将被并在要分配的金币堆中,这时候又怎样? 5 Z' q, b; d4 a6 v( X# a1 y
7 v6 L9 l m* T2 U& M+ f$ `
通过对规则的细小改变,海盗分金问题可以有许多变化,但是最有趣的大概是1)和2)(规则仍为50%票数即可)的情况,本帖只对这两种情况进行讨论。
7 ^' Y( ]$ x# E$ T
: w. q9 O# W% D# p% g 首先考虑1)。现在只有P1和P2的情形变得对P2其糟无比:1票是不够的,可是就算他把100枚金币都给P1,P1也照样会把他丢到海里去。可是P2很关键,因为如果P3进行分配方案的话,即使他一枚金币也不给P2,P2也会同意,这样一来P3就有P2这张铁票!P3的最佳方案就是:独吞100枚金币。 6 n7 w1 x' ^4 \# p6 a6 V
7 L7 n* j( x0 I- `$ U; P- X
P4要3张票,而P3是一定反对他的,而如果不给P2一点甜头,P2也会反对,因为P2可以在P3的方案中得救,目前为什么不把P4丢到海里呢?所以要分别给P1和P2一枚金币,这样P4就有包括他自己1票的3票。P4的方案为:P1,P2每人1枚金币,他自己98枚。
1 ~8 L2 |. A" p" |7 |* C( R0 C. Q; `4 H: l4 }' y
P5的情况要复杂点,他也要3票。P4是会反对他的,所以不用给,给P3一枚金币就能使他支持自己的方案,因为在接下来的P4方案中他什么也得不到。问题是P1和P2:只要其中有一个支持就可以了。可是只给1枚金币是不行的,P4方案中他们一定有1枚金币可得,所以只要在他们中随便选一个,给2枚金币,另一个就对不起了,不给。这样P5的方案是:自己97枚,P3得1枚,P1或P2得2枚。
0 E- A3 \1 w2 M6 m. D5 w) [
$ t% Z6 \9 `3 ]' h8 A& U P6的方案建立在P5的上面,只要给每个P5方案中不得益的海盗1枚金币。要注意的是,P1和P2都应该看作在P5方案中不得益的:他们可能得2枚,可是也可能1枚不得,所以只要P6给他们1枚金币,根据“二鸟在林,不如一鸟在手“的原则,就可以让他们支持P6的方案。所以P6的方案是唯一的:P1,P2,P4每人1枚金币,P6自己拿97枚。 ' M: ~3 ^8 I4 v5 q. {" Q0 K
) u8 @) c/ k h+ T: j% A- G' i8 j3 | 这样继续下去,P9的方案是:P3,P5,P7每人1枚金币,然后在P1,P2,P4,P6中任选一人给2枚金币,P9自己得95枚。最后,P10的方案是唯一的:P1,P2,P4,P6,P8每人1枚金币,P10自己得95枚。 4 i6 w! E* P4 P" B- X- R
% t& W* @, q6 k1 V. U* Y, v 2)是最有趣的(提醒:我们回到50%票即可的规则)。原题解中的推理过程直到200个海盗都是成立的:P200给每个偶数号的海盗1枚金币,包括他自己,其他海盗什么也得不到。从P201开始,继续推理就变得有点困难了:P201为了不被丢到海里去,必须什么也不留给自己,而给从P1到P199中所有奇数号海盗每人1枚金币,从而争取到100票,加上他自己1票,逃过一劫。P202也什么都得不到,他必须用这100枚金币买通100个从P201的方案中什么也得不到的海盗,要注意到现在这个方案不是唯一的:P201的方案中得不到金币的海盗是所有奇数号的海盗,有101个(包括P201),所以有101种方案。 1 p3 W$ _# ^) d& n
8 X6 A3 N% k' H3 b P203必须得到102票,除了自己的1票外,他只有100枚金币,所以只能买到100票,所以可怜的家伙就被丢到海里喂鱼了。但是,P203是个很重要的角色,因为P204知道如果自己的方案不被通过,P203也一样会完蛋,所以他有P203的一张铁票。所以P204可以大出一口气:他自己一票,加上P203一票,然后加上用100枚金币买的确100票,他就得救了!100个有幸得到1枚金币的海盗,可以是P1到P202中任何100个:因为其中的偶数号的从P202的方案中什么也得不到,如果P204给他们中某个海盗1枚金币,这个海盗一定会赞同这个方案;而编号为奇数的海盗呢,只是有可能从P202的方案中得益罢了(可能性为100/101),所以根据“二鸟在林,不如一鸟在手“的原则,如果能得到1枚金币,他也会赞同这个方案。 # \" }% P5 R) I& I! y# G4 S
" k( d6 _- L+ j9 ?1 _$ \" `
接下去P205是不能把希望放在P203和P204这两张票上的,因为就算他被丢到海里去,P203和P204还可以通过P204的方案机会活下来。P206虽然可以靠P205的铁票,加上自己1票和100枚金币搞到的100票,只有102票,所以他也被丢到海里喂鱼。P207好不了多少,他需要104票,而他自己以及P205和P206的铁票加上100枚金币搞到的100票只有103票——只好下海。
3 v1 x# p* N- v& c* t7 s/ V+ N
! K% l- {# t0 m P208运气比较好,他同样也要104票,可是P205,P206,P207都会投票赞成他的方案!加上他自己的1票和买来的100票,他终于逃脱了做鱼食的命运。 & b# r3 C- h: V' D; ? p6 ?
* p4 L6 @1 f; n4 r$ {9 g
这样我们就有了一种可以一直推下去的新逻辑。海盗可以什么也不留给自己,买上100票,然后依靠一部分一定会被丢下海的海盗的铁票,从而让自己的方案通过。有这样运气的海盗分别是P201,P202,P204,P208,P216,P232,P264,P328和P456……我们看到这样的号码是200加上一个2的次幂。
; \0 V* J- f8 r' p) S4 \( m# N1 o/ s# ?$ U( c+ Q% G
哪些海盗是受益者呢,显然铁票是不用(不能)给金币的。所以只有上一个幸运号码及他以前的那些海盗才有可能得到1枚金币。于是我们得到500海盗分100枚金币的结论是:前44个最凶猛的海盗被丢进海里,然后P456给P1到P328中的100个海盗每人1枚金币。 ; _# j& I. H# i. X! c( h
& Q2 k4 B' c9 y) q$ ~4 }
就这样,最凶猛的海盗被丢进海里,而比较凶猛的什么也得不到,而只有最温柔的那些海盗,才有可能得到1枚金币。正如《马太福音》所说:“温柔的人有福了,因为他们必承受土地!” |