——经典智力题推而广之一
. q7 m) s/ v- k" S1 d" z (本帖改编自《科学美国人》杂志中IanStewart的《凶猛海盗的逻辑》)
! p) C) Z; ?/ M# Q' R8 Y1 f
9 n9 k( F4 b& F8 C& ~: ` 海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。
& M, F# q6 q* s( s
* K3 T7 s' d1 P* V. ]* ?* @( } 现在船上有若干个海盗,要分抢来的若干枚金币。自然,这样的问题他们是由投票来解决的。投票的规则如下:先由最凶猛的海盗来提出分配方案,然后大家一人一票表决,如果有50%或以上的海盗同意这个方案,那么就以此方案分配,如果少于50%的海盗同意,那么这个提出方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶猛的那个海盗提出方案,依此类推。
J% U: D4 H: o* N5 s1 {& X, s" S$ q2 s3 {. H% d* V0 n7 _& n
我们先要对海盗们作一些假设。 + o& B( Z) u3 E
& \. [! R; \& y5 g. X 1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私底下的交易是不存在的,因为海盗除了自己谁都不相信。
- r4 ~% V, q+ X% J! ^5 y: E0 p 2) 一枚金币是不能被分割的,不可以你半枚我半枚。 ' E4 F5 n' {5 B5 V2 F/ Z
3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。
1 w# X- x6 U& m- c- T! D# {. Z% L 4) 每个海盗当然希望自己能得到尽可能多的金币。
2 g: u- g6 P1 D" t; M 5) 每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。 $ {1 A$ \6 s4 B* a0 K: m6 |, f' h# Q
6) 最后,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。在不损害自己利益的前提下,他会尽可能投票让自己的同伴喂鱼。 6 j0 z& s) z' [. Z$ p
, F7 X" U G& j' b* u8 z
现在,如果有10个海盗要分100枚金币,将会怎样? [eWebSoft_NextPage]
, m! a1 ~ o7 k, V9 \7 I- V; d6 O
要解决这类问题,我们总是从最后的情形向后推,这样我们就知道在最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可以得到最后第二步应该作怎样的决定,等等等等。要是直接就从开始入手解决问题,我们就很容易被这样的问题挡住去路:“要是我作这样的决定,下面一个海盗会怎么做?”
0 @! N/ A1 m8 {$ x' _) n+ c' D# K! i( l
以这个思路,先考虑只有2个海盗的情况(所有其他的海盗都已经被丢到海里去喂鱼了)。记他们为P1和P2,其中P2比较凶猛。P2的最佳方案当然是:他自己得100枚金币,P1得0枚。投票时他自己的一票就足够50%了。
3 Z( b z" v1 ~; U+ Q {+ y3 ?
5 ]# I: g$ z$ w2 M8 l) D* e 往前推一步。现在加一个更凶猛的海盗P3。P1知道——P3知道他知道——如果P3的方案被否决了,游戏就会只由P1和P2来继续,而P1就一枚金币也得不到。所以P3知道,只要给P1一点点甜头,P1就会同意他的方案(当然,如果不给P1一点甜头,反正什么也得不到,P1宁可投票让P3去喂鱼)。所以P3的最佳方案是:P1得1枚,P2什么也得不到,P3得99枚。 3 Y P$ C" c5 _2 W/ s9 v3 s
$ d0 p1 ^9 V/ e" E9 p# o
P4的情况差不多。他只要得两票就可以了,给P2一枚金币就可以让他投票赞同这个方案,因为在接下来P3的方案中P2什么也得不到。P5也是相同的推理方法只不过他要说服他的两个同伴,于是他给每一个在P4方案中什么也得不到的P1和P3一枚金币,自己留下98枚。
. E+ g H% E; s3 Y; n( {0 [
% c1 C! T$ z5 D% e4 r 依此类推,P10的最佳方案是:他自己得96枚,给每一个在P9方案中什么也得不到的P2,P4,P6和P8一枚金币。 4 k8 {* S/ w# @8 z
+ d/ Z3 _" R( ^' I5 B
下面是以上推理的一个表(Y表示同意,N表示反对): , f2 V/ ^7 n: C6 b8 T7 R7 k! q
0 _ E" V4 S7 L9 A
P1 P2
% j6 M6 J; G, X 0 100
: H. `4 K+ b9 p0 V- e2 F" D; t0 P. \ N Y
, r( T! O) x6 M: _8 v
& W: B/ C D$ `" z. r: s m P1 P2 P3 ' i Q: p; |; Q4 g1 O& @
1 0 99 , z# O, O* q, c! h4 L2 ]* Q
Y N Y 2 Y6 ^1 @! P+ \0 d9 j3 v4 p
F6 }; @ V( m. [/ x* B# X P1 P2 P3 P4 1 ?, @2 @ o2 K# r, G
0 1 0 99
9 K8 ~) C; Z0 B! D1 n9 ^ N Y N Y
5 Y( G' H9 W) ?$ q4 N! ]/ D) Z2 V, ^- P5 c# e+ }- a* ?
P1 P2 P3 P4 P5
1 O# f( i1 j$ O4 p- N* {0 A 1 0 1 0 98
; t8 v1 }4 q7 S6 K) ^ Y N Y N Y
0 W2 d4 _/ x) v6 S j
. j- k( z( O4 M ……
8 X l2 b7 | i+ h; y1 p; z5 ]2 L
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
4 }3 Z- ?6 N8 `0 }: C& k 0 1 0 1 0 1 0 1 0 96
1 j% ^! `- i: V9 F: } N Y N Y N Y N Y N Y
) C: q* D) \: p7 T: G, ~- m, ~7 }[eWebSoft_NextPage]; n# P3 t' U p! G# _- c6 a
" D7 m2 H0 U- {0 P
现在我们将海盗分金问题推广: f4 ^: c1 k9 t3 V8 G% m/ H
) H5 G4 `' r4 L, L$ c# F6 ?5 H 1) 改变一下规则,投票中方案必须得到超过50%的票数(只得到50%票数的方案的提出者也会被丢到海里去喂鱼),那么如何解决10个海盗分100枚金币的问题?
' d) m) ?! K) z( q+ W* |. I 2) 不改变规则,如果让500个海盗分100枚金币,会发生什么?
& @6 R1 I, w* o" }2 }6 ] 3) 如果每个海盗都有1枚金币的储蓄,他可以把这枚金币用在分配方案中,如果他被丢到海里去喂鱼,那么他的储蓄将被并在要分配的金币堆中,这时候又怎样?
( G# ?* ~) ]* P1 d( G& N
9 U7 R3 ^: W4 r! {0 z. n4 j 通过对规则的细小改变,海盗分金问题可以有许多变化,但是最有趣的大概是1)和2)(规则仍为50%票数即可)的情况,本帖只对这两种情况进行讨论。
( Y3 {) Z. e7 i# t$ t/ D
6 L4 o% N* c4 H1 d 首先考虑1)。现在只有P1和P2的情形变得对P2其糟无比:1票是不够的,可是就算他把100枚金币都给P1,P1也照样会把他丢到海里去。可是P2很关键,因为如果P3进行分配方案的话,即使他一枚金币也不给P2,P2也会同意,这样一来P3就有P2这张铁票!P3的最佳方案就是:独吞100枚金币。
" s2 w# K* L( Q: W( F! q: r* Z5 _# }0 {* m7 n, S
P4要3张票,而P3是一定反对他的,而如果不给P2一点甜头,P2也会反对,因为P2可以在P3的方案中得救,目前为什么不把P4丢到海里呢?所以要分别给P1和P2一枚金币,这样P4就有包括他自己1票的3票。P4的方案为:P1,P2每人1枚金币,他自己98枚。 & C8 w0 z3 q7 w# ?% e, N6 P
& t$ S# \5 z: @5 d* x4 x# n P5的情况要复杂点,他也要3票。P4是会反对他的,所以不用给,给P3一枚金币就能使他支持自己的方案,因为在接下来的P4方案中他什么也得不到。问题是P1和P2:只要其中有一个支持就可以了。可是只给1枚金币是不行的,P4方案中他们一定有1枚金币可得,所以只要在他们中随便选一个,给2枚金币,另一个就对不起了,不给。这样P5的方案是:自己97枚,P3得1枚,P1或P2得2枚。
0 E3 O7 o! N# f- c1 }6 | C, x& y4 Q4 a3 E6 N/ Z' c' E
P6的方案建立在P5的上面,只要给每个P5方案中不得益的海盗1枚金币。要注意的是,P1和P2都应该看作在P5方案中不得益的:他们可能得2枚,可是也可能1枚不得,所以只要P6给他们1枚金币,根据“二鸟在林,不如一鸟在手“的原则,就可以让他们支持P6的方案。所以P6的方案是唯一的:P1,P2,P4每人1枚金币,P6自己拿97枚。 " `3 a6 D, A- | s7 F! }. w- D
+ P1 ~! ~; |; b
这样继续下去,P9的方案是:P3,P5,P7每人1枚金币,然后在P1,P2,P4,P6中任选一人给2枚金币,P9自己得95枚。最后,P10的方案是唯一的:P1,P2,P4,P6,P8每人1枚金币,P10自己得95枚。
6 G, m7 G3 d$ Z- _7 z) Z8 t
6 ~& O% ^# H6 r5 n# W 2)是最有趣的(提醒:我们回到50%票即可的规则)。原题解中的推理过程直到200个海盗都是成立的:P200给每个偶数号的海盗1枚金币,包括他自己,其他海盗什么也得不到。从P201开始,继续推理就变得有点困难了:P201为了不被丢到海里去,必须什么也不留给自己,而给从P1到P199中所有奇数号海盗每人1枚金币,从而争取到100票,加上他自己1票,逃过一劫。P202也什么都得不到,他必须用这100枚金币买通100个从P201的方案中什么也得不到的海盗,要注意到现在这个方案不是唯一的:P201的方案中得不到金币的海盗是所有奇数号的海盗,有101个(包括P201),所以有101种方案。
$ o+ \) T7 r4 G) D9 S6 g5 w6 D, U& }$ B1 X( }% n$ k
P203必须得到102票,除了自己的1票外,他只有100枚金币,所以只能买到100票,所以可怜的家伙就被丢到海里喂鱼了。但是,P203是个很重要的角色,因为P204知道如果自己的方案不被通过,P203也一样会完蛋,所以他有P203的一张铁票。所以P204可以大出一口气:他自己一票,加上P203一票,然后加上用100枚金币买的确100票,他就得救了!100个有幸得到1枚金币的海盗,可以是P1到P202中任何100个:因为其中的偶数号的从P202的方案中什么也得不到,如果P204给他们中某个海盗1枚金币,这个海盗一定会赞同这个方案;而编号为奇数的海盗呢,只是有可能从P202的方案中得益罢了(可能性为100/101),所以根据“二鸟在林,不如一鸟在手“的原则,如果能得到1枚金币,他也会赞同这个方案。 & G( `, P' Z$ K2 ?6 ^/ x- Q
1 ]& d0 J B0 [4 G+ V8 m9 K- t% ^ 接下去P205是不能把希望放在P203和P204这两张票上的,因为就算他被丢到海里去,P203和P204还可以通过P204的方案机会活下来。P206虽然可以靠P205的铁票,加上自己1票和100枚金币搞到的100票,只有102票,所以他也被丢到海里喂鱼。P207好不了多少,他需要104票,而他自己以及P205和P206的铁票加上100枚金币搞到的100票只有103票——只好下海。 ( s/ W: {# a9 V) H8 H
; H% S; k4 E) N2 i P208运气比较好,他同样也要104票,可是P205,P206,P207都会投票赞成他的方案!加上他自己的1票和买来的100票,他终于逃脱了做鱼食的命运。
, c, G1 M5 }/ B/ P1 F V3 ~$ n/ Y. b, {& ]" Q5 a
这样我们就有了一种可以一直推下去的新逻辑。海盗可以什么也不留给自己,买上100票,然后依靠一部分一定会被丢下海的海盗的铁票,从而让自己的方案通过。有这样运气的海盗分别是P201,P202,P204,P208,P216,P232,P264,P328和P456……我们看到这样的号码是200加上一个2的次幂。 5 l% ]( Q# ~4 ~1 n' L
$ f7 e l& r- J% y
哪些海盗是受益者呢,显然铁票是不用(不能)给金币的。所以只有上一个幸运号码及他以前的那些海盗才有可能得到1枚金币。于是我们得到500海盗分100枚金币的结论是:前44个最凶猛的海盗被丢进海里,然后P456给P1到P328中的100个海盗每人1枚金币。 * x. d4 u5 G- _7 S1 u% Z, g
6 N5 k' p2 G& d% e: j 就这样,最凶猛的海盗被丢进海里,而比较凶猛的什么也得不到,而只有最温柔的那些海盗,才有可能得到1枚金币。正如《马太福音》所说:“温柔的人有福了,因为他们必承受土地!” |