1883年,英国物理学家O.雷诺观察了圆管内的流动状态,首先提出:由层流向湍流的过渡取决于比值dup/μ(d为管子内径)。这个比值即雷诺数 Re。流态转变时的Re值称为临界雷诺数。实验(见层流)表明:对于圆管内的流动,当Re〈2300时,流动总是层流;Re〉4000时,流动一般为湍流;其间为过渡区,流动可能是层流,也可能是湍流,取决于外界条件。对于平行流体流过光滑平板的情况,边界层由层流转变为湍流的临界雷诺数约在105~3×106之间。" a3 X( i+ h; p' Z
5 e9 U2 E. Y2 S) T' e u( o 依据雷诺数的大小可以判别流动特征,从而对运动方程作不同的近似处理,得出方程的解。此外,在涉及流体流动的热量传递和质量传递等过程中也广泛应用雷诺数。雷诺数对流体流动过程的实验研究有重要作用。若几何相似的模型实验与实际过程的雷诺数相等,则称两者为动力相似的流动。这对研究粘性流体流动的实验设计和数据处理有重大意义