|
半箱体破裂原因分析及模具改进[摘要]通过对半箱体成形、翻边复合过程的分析,找出了零件破裂的原因在于成形及翻边的“节奏”不协调,或形部分设置的压边力不恰当,使成形区内阻力大大,导致全属流动不畅而破裂,在此分析基础上,对已设计好的模具结构,依据全属流动的开、限流原则,改进了模具结构,采取了措施,解决了零件破裂问题,生产出合格的零件。 . O& [4 U! v) w/ R8 S
8 g: V! x; n( Z/ g; E! N" e
关键词 半箱体 破裂 分析 模具改进 . Z" F1 y. v! m6 f7 g* f6 z& ^
; V% r3 w+ @9 ]# Y* b. m, k1 前言
9 j. x' S+ p& F1 F: m9 k6 b i
, G" k) r& P( G) q2 Z5 H8 _半箱体是我公司某产品上的零件上,采用1.5mm厚的LF3料制成,使用时为两个半箱体拼焊成一完整箱体。由于结构的需要,在半箱体箱口边缘要成形一最大高度达90mm的异形鼓包,形状如图1所示。  2 零件工艺性分析 7 b0 p' K# t; d) f0 i
; d, }% Y2 ^* L% L该件属成形、翻边复合件,其外形尺寸较大,形状较复杂,零件成形高度大、成形范围广。对于最大成形高度90mm部位主要为弯曲成形,其余部位基本属局部成形,最大延伸率为8%左右,小于材料的极限延伸率11%,基本在成形要求的范围内,故成形性能较好。
' f% S) c7 V- _% U l& i9 }2 t; v5 h2 V7 h! A2 P3 }1 n7 e( K- g/ \ |
对于半箱体的翻边而言,其实质是半个矩形拉伸件,因而变形与矩形件拉伸一致。对于矩形件拉伸,其相对圆角半径r角/B=15/685=0.02,相对高度H/B=(155-90)/685=0.095,根据矩形件拉伸分区判断条件,可确定拉伸分区位置,依据分区位置,因为R角/(B-H)=15/(685-65)=0.024<0.17,故可判定其属于圆角半径较小的低矩形件。又由于其毛坯相对厚度δ/B=0.22,查表可知,该件一次拉伸零件能达到的最大相对高度H/r=6>H零/r零=(155-90)/15=4.3,因此,该零件能一次拉伸成形,并且其假想拉伸系数较大,故拉伸性能较好。考虑到零件若采用两件组合成完整矩形件进行加工,则异形鼓包完全成为矩形件底部的异形件拉伸,将使零件受力复杂化,工艺制订及加工变得困难;另一方面,由于零件本身较大,组合后将会使模具变得庞大,也不利于生产及加工。 # v9 v6 k0 A: P/ i6 ^5 J4 q
& B! s V& L0 p# \( {综合上述分析,决定在剪扳机下料后,在Y32-300油压机上采用成形、翻边复合工艺一次完成,成形后钳工稍稍修剪平成形部位及周边。
1 R3 ~7 s% V: t/ j* t3 c; X4 ?2 f1 B# ^. _0 S
3 模具设计
1 z7 @- v6 ]) U. ~, M: J6 j2 @% q; M7 L
3.1 模具结构及其工作过程
7 C! m; z0 t: b$ W# s) E9 g
# Z! W4 l& i# Z d& Z该模具上模分别由翻边凹模9、上模成形块2等组成,与下模成形块3、下模6共同承担成形鼓包与翻边的作用,同时,上模块2与下模6还共同压紧板料,以防止产生起皱或波浪。下模由下模6及下模成形块3等组成。下模6的两侧面同时通过下模成形块3侧面起一定的导向作用,下模成形块3用于成形半箱体的鼓包。 8 ^& t& H+ Q$ h
: M' } ~. m7 F5 W8 N8 }0 F1 ~
模具工作过程:油压机上行,模具开启,卸料油缸上升将气垫杆7顶起,气垫杆7带动下模6升至与下模成形块3平齐,同时,上模成形块2在弹黄5弹力作用下下降至凸出翻边凹棋9底面lOmm,此时,卸料螺钉4正好限制到位,将坯料置于下模6后,压机滑块下行,上模成形块2与下摸6将坯料压紧实施压边。随着压机滑块下移,上模成形块2与下模成形块3成形鼓包lOmm,与此同时,翻边凹模9与下模6开始对零件边缘进行翻边,随着压机滑块的逐渐下移,鼓包被成形出来,直到上模成形块2顶面与上模板1底面贴合,下模6底面与下模板8顶面贴合时,翻边、成形结束。随着油压机滑块上行,卸料油缸通过气垫杆7将下模6顶起,上模成形块2在弹簧5弹力作用下共同将成形好的零件顶出。 + a" `( {2 i: }6 g" k
( s0 T$ F6 s" @/ \, D
3.2 设计要点 ) U* V( c) f t/ V7 a# h
, p' f- L* q5 [ P5 w(1)考虑到零件形状不对称,偏心力大,故实施压边,根据零件结构,采用上模成形块2与下模6进行压边,使下模6在气垫杆的作用下与下模成形块3等高,从而成形过程能始终压紧坯料。 ! o5 R- i* w3 u# ?/ A7 ?- Z
(2)为便于鼓包成形,使翻边凹模9底画凹进上模成形块2(在弹簧回弹后)10mm。 3 y5 t- H- d( i2 n! ]/ P6 w. c# q$ t
(3)翻边凹模9圆角取R8mm,下模成形块3圆角取R5mm。
7 l# U; C) r% D1 U
z0 K; T$ k/ I7 a2 r$ m, I+ B$ s, u1 }4 故障产生及原因分析
3 ]5 i+ F7 G( P! a3 v0 l# I' j! \3 d0 ^5 I, [
模具设计、试模后发现:成形鼓包于口部开始发生拉裂,裂纹沿半箱体长度方向延伸,长达40-60mm,破裂率达100%。 / x; u' F% A' k1 h* t- p
1 a; ^' G& W- \3 [0 E* o
针对上述情况,对半箱体破裂原因进行了认真的分析,首先在对材料进行理化检测,排除材料问题之后,又怀疑由于展开料不足而导致成形拉断进行了复验,结果发现屐开料没问题。为此,对模具结构进行了分析: % C+ t" v/ P) y% x3 v
0 S- p- j9 @% T- [" f从零件形状来看,190mm方向上成形需要该方向的金属流动通畅,面530mm方向30mm范围内的U形金属流动要自由得多,它基本属于弯曲性质,不太受165mm范围内成形鼓包的影响。按理应不会发生拉裂。又从模具工作过程着手进行分析。 ) B* H, i- w, T% Z# R T- ~0 `
& O; I6 d' ]: z0 w. B根据模具工作过程可知:成形过程中,上模成形块2与下模6一直实施坯料压边,当成形IOnm后,翻边凹模9与下模6开始对零件边缘进行翻边,此时,成形部位的金属需要从侧边流动变得已不再通畅,造成应该变形的部分——变形区成为强区,而本应是传山区的零件边缘却过早产生厂塑形变形,并受到较大的压边力作用,使传力区的材料难以流动到变形区,从而加大了危险断面处的拉应力,导致变形区的成形只能依靠减薄料厚来供给成形的需要,当延伸率超过延伸极限时,板料变薄严重或破裂。由于制什右边成形时成形边缘大大多于左边成形边缘能转移的材料,这就使得左边成形部位比右边更易破裂,另一方面,下模成形块3与下模6由于结构上的原因,将形成一尖角A(如图2俯视图示),从而使金属材料在该处须向径向及横向转移动.由于模具结构及成形过程的限制,该处金属流动阻力最人,使传力区的材料难以流向成形区,造成成形破裂。该处尖角也往往成为破裂源,造成周围的材料产生裂纹。 , C9 e9 ]8 L C9 x
' J" {" h- h/ m3 |$ {' |' r根据上述分析知,破裂的原因在于:压边过多、翻边过早使成形区阻力太大,金属流动不畅而产生严重变薄导致破裂;模具结构不合理,尤其是下模分块位置不合理,分块造成的尖角A使板料在鼓包成形及翻边时与之产生摩擦划伤,加速了半箱体的破裂趋势。
: z! D# {- p7 r& b, M7 t% U/ e D& Z* o9 t8 e8 b& S" |( d: Q' U4 z
根据零件结构,设计了图2所示模具:  5 模具改进思路及要点 : j1 [* X! u' C: ~. ^
8 x/ K% O, ]9 ]
由于模具体积大,重量达2t多,加之模具修理周期长,易影响零件生产进度,故不便于对模具作较大的改进,只能进行局部改进,同时又要保证模具生产出不破裂的半箱体。控制金属流动的基本原则是开流、限流,即需要金属流动的地方减小阻力,让其顺利流动。在不需要金属流动的地方加大阻力,限制其流动。
2 ?. r- u2 m I0 F n
, v' @+ a K5 W3 F" q依据上述原则,改进后模具结构如图3所示,采取了以下措施:
0 n! {( |6 I% k
; w3 q6 V$ t3 [. q2 j) J% c(1)将原上模成形块2从成形处分割成上模块(图3件1)及上模块Ⅱ(图3什4)曲部分,更换原卸料螺钉(田2件4)和弹簧(图2件5)为卸料螺钉I(图3件2)、弹簧1(图3件3)和卸料螺钉Ⅱ(图3件5)、弹簧Ⅱ(图3件6),卸料螺钉I、弹簧I比原卸料螺钉和弹簧长30mm,而卸料螺钉Ⅱ、弹簧Ⅱ比原卸料螺钉和弹簧短30mm。
+ ?3 h' |, y5 [# d(2)为保证零什不偏移,依然实施压边,但根据零件成形特点,在鼓包成形的上模块Ⅱ底而加工出让位槽,对其不实施压边。
; U. [6 ]" L0 S( F# U* ~(3)增大弯曲及成形圆角部位的单边间隙0.1mm.从而减轻材料受模具的束缚而造成流动困难。  (4)增大翻边凹模(图2件9)圆角为R12mm,下模成形块圆角取R8mm,以利于金属的转移,
8 J7 H( T# z% n) s! ?(5)为避免下模成形块(图2件3)与下模(图2件6)分块部位形成的尖角A,造成板料在鼓包成形及翻边时的摩擦划伤,在其相配的上模块Ⅱ(图3件4)部位加大圆角为R16mm,并使该部位间隙单边加大0.3mm,对形成的较大圆角在加工完后利用手工校正。通过采取措施(1)、(2)后,在60mm高度鼓包成形时,坯料成形是自山的;而在后续成形时.尽管坯料被压紧,翻边也同时进行,但巾于开设了让位槽,因而成形过程中的金属流动仍然是通畅的。
$ p# ^- _6 ^5 O9 n& {- t( e$ l
9 W5 o; l$ O% O6效果及结论
- h& j' g/ x: V5 k& M- c5 G0 q9 ?
改进后的模具经重新试模,零件全部符合图纸要求,未能产生破裂。
/ T' s1 P, d( t' ?% ?
& G! K2 l8 Q. m" L0 {$ C9 f模具改进的成功表明:依据金属流动的开、限流原则,对成形、翻边复合件进行仔细分析,合理安排好成形及翻边的“节奏”,设置好恰当的压边形式,保持金属流动的通畅,能妥善解决好零件破裂问题,生产出合格的零件。 |
|