Complex parts in one operation
" b$ I' l& \* @1 k( [) V* Y, [
Wide range of properties
T5 z7 Y7 t" X
Coloring
7 j. C, A; x$ j; a* s8 ]Low energy requirements
6 ^- {+ q9 q/ t, B3 f% g3 N3 O# f
Good insulators
O! \9 |; Q+ A, q/ m. s) L* [3 c
Low cost & weight
/ {" v7 r( q6 n, x E: v& ^" n/ J4 {
Resistance to chemicals
% `% g& J, e/ R, l N3 r/ W5 Z
From monomers to polymers
) Y( {8 M5 E& g- d
Examples : (in between   : monomer )
% h2 n7 \5 `& \Polyethylene: (catalytic polymerization of ethylene gas under high pressure)
: s' {8 [3 F; c$ C# Q6 e' k k" t
—CH2 — CH2-- CH2 — CH2 -- CH2 —
- w# P9 I+ Z+ y% q- K. o- \% k; z
Polypropylene: (catalytic polymerization of propylene gas under pressure)
( q$ O$ h. Z& `& X. ~
—CH2 — CH-- CH2 — CH -- CH2 —
& i& H5 q2 y" p1 W& k2 x% V& t CH3 CH3
/ H+ R1 r# n7 @& W- y
Polyvinylchloride :
5 z0 X+ A) S/ d- R8 k4 v — CH2 — CHCl -- CH2 — CHCl -- CH2 — CHCl —
4 W( A$ U8 g7 n& l, w" w6 Z
- w3 I. A5 q1 I' o5 W5 y2 r
Molecular weight
* K7 M! h* W( ?3 `9 R3 t: [/ ?
4 I2 K2 j$ z% X2 W8 v
: {6 l9 V$ i- ^& x0 X5 C4 |
( [# N; G, J- Z
Polymer structures
+ D& ^% _' K9 Q. G- _8 v2 n
Homopolymers (ie PP homo)
( s8 b% g% z3 C0 xCopolymers (ABS, SAN)
: q' d* N( C. }1 vrandom
* Q& D) O; o4 h5 l% @) H
regular
$ G7 o* v q+ J9 ]2 t( M7 f0 \sequenced
* v* p1 I& G) |9 s0 J2 m1 A: J
linear
- N; A* m, v: o4 X7 T7 M7 f4 O
grafted
3 T) X9 l% v9 L" b& W# Y- g4 p1 mBlends and alloys
+ L4 F: A a* F! N
7 H& g- E, b. p4 Q
Polymer structures
% l( F( ?+ D' l; UWhy using Blends and alloys?
5 O, g4 q c+ L! v) n, MTo combine properties of different polymers.
' {$ c- q7 s( S8 b: O
Examples: what brings each polymer in blends below?
l/ w e7 x0 \- x& {" J* x6 b+ vABS/PC
; F: m3 ?. @+ t7 _% `. n" z
PC/PBT
% h( x4 H1 F. C h2 K
PPO/PS
3 @1 R; f- N- u( C4 G( G# _8 S
PA/PPO
0 h9 |9 k5 G1 |8 E2 m! a2 ^
) p/ |# ?, v) iPolymer structures
h8 y6 @7 R/ s7 z$ O2 m1 |; e- |6 }4 R+ P/ L2 H
Crystalline vs Amorphous resin
! Y6 v9 p% K1 |9 A1 I; r
Are the resin different?
0 G, P4 b$ x+ [$ U
Are the resin processed the same way?
a7 S8 w. V! \ m2 O9 b+ k
Can the resin be used in the same applications?
6 f" R' q8 E- H- K6 C
* Q1 H' g$ [. G4 v' t# s& I
Amorphous resin
. b, X) m7 M: x
Non organized structure
/ ^ F' e5 G H UBroad softening range: 20°C
9 M# j T, o* a3 \8 oHigh viscosity usually
9 H0 j! W9 M ^: e2 Q* y( R
Poor chemical properties in general
7 r6 z- r+ V/ t( x9 c3 d/ g
Can be transparent
5 I5 T! e1 v' q6 S" a; K) D( ? |/ r0 e* J* I- ~/ _
Amorphous resin
1 b+ e3 b% ]( X
: @! H2 O2 u% d) ^
" B: b, U; C" {7 w
2 _8 W' k: b3 B9 N* U$ o: C/ |, DCrystalline resin
, t$ a# X5 t4 E6 T' W, B+ v7 T O8 i( UOrganized structure
9 V a- Z( |1 f
- Z% v0 G# M/ y s: p8 Y x. m# W3 M4 n
: X+ {5 L- Q3 u/ ~0 a# Q
Melting point: within 5°C
; O p8 k4 i; f7 o' m- bLow viscosity usually
) U4 m% z L8 D
Good chemical properties in general
+ b! n3 D4 Z. ~$ N2 P) nUsually not transparent
, W- r( j+ [) |0 t& w4 w' V
2 G0 k+ w, ?* ]. I5 ~! KCrystal structures (1)
8 x% i7 \! K; |% ~) ~6 h9 h' [! y! X; t) X& J! L
+ E# c) X5 k6 d- Z$ P
1 H6 A% M! g) Y. pCrystal structures: the unit cell (2)
/ O! s& h3 t; r' j: h* ^
; J! i4 |0 _: h" {( f9 h; }
1 t; T3 a) j: v5 b' e3 d/ |' e4 b
! e9 l, y0 H" {+ J3 c7 eMacro structure: the spherulite (1)
; [$ h6 P4 Q# y# [ G! q3 V3 A6 t6 R" ^ e
Most of the semi-crystalline resins crystallize into a spherulitic macro structure. The macromolecules loop on themselves to shape a lamella. The lamellas are assembled into a spherical super structure called spherulite. The spherulite is growing from a center point, the nucleation point.
' x7 m5 X- {7 l2 v" J* J5 R
( {# L* F3 p s
) L5 i( r9 G( h* Z R1 _8 O; F
2 O( J9 j; }" l1 o
Macro structure: the spherulite (2)
4 \: G, h. P; ~( r" u
6 i7 s* s1 X- h, ~8 r: i2 F4 NThe crystalline entities can also be discs or rods. Once the crystalline entities growth is blocked up by other crystralline entities, the primary crystallization is over and start the secondary crystallization between crystalline entities or lamellas.
# D, P: I5 j' u) r4 k9 E* [
Macro structure
, f1 W8 m+ P* V6 C1 V
. J m" T+ |% u+ A: UCrystalline resin
! P+ h P+ w( ^ r
1 a1 }0 ~! Q0 }3 G7 p7 ^! y( k R+ R1 h
4 s6 Y0 x9 T/ \) K7 p
4 T8 A5 B/ e* t& C& T1 @1 a0 n( bSemi-crystalline resin
3 g$ M( R# H9 t% S
( i Y5 ?8 z: o) X
: m2 F$ ?3 ]! K6 T
7 C* {( H, f: S, f6 o
Semi-crystalline vs amorphous resin (DSC)
- y' n0 J& V( k+ g
$ a9 X, j' L9 j/ a" g
6 W$ L. t n* n' _4 P/ R( \$ n' n
! h; o. r5 Y0 R" }5 lTg and Tm: some examples
4 ^. \1 S" ~5 }0 u( ^2 O: P) H3 l. j$ I% b$ ]) |& u/ O1 R
0 A. R& W0 q8 f8 I! R1 J& q' ? K- `( i& T* p! h/ e+ [- K5 ~+ G
Typical process temperatures
! v' d9 V# O9 t4 p7 |
3 Z C1 e% c4 g! u0 t: A
. `$ n1 w8 F: I. M* ]* H) W
( Y/ Z4 V& s* O: C# m/ ^Physical properties
& a0 f& {, X" d2 L4 v; w0 S0 b6 v7 [
4 l: w; ^4 O# F' q* {8 T4 y6 O
( T# [' [6 v# o0 N8 l
/ k: M* @& ]1 `4 R; nThermoplastic families / Applications
. X A9 x3 E; i! D/ G. z' K
+ B) K$ ~% @# u0 [5 x; V% `
( ?" M! ?# G& m/ _
5 l+ L+ A4 e+ F/ K5 o6 t$ _! WThermoplastic families / Applications
- n2 c! }( T% `8 p2 J; N9 c7 b! f; l3 e. C' h g3 ]+ _2 J
! @7 I% k4 f4 F& {
8 e5 B# v9 c1 N9 {8 WThermoplastic families / Applications
& F+ A: j0 ?- x8 N6 \
# w( f" v7 ]4 U2 _5 b0 j/ a/ O# R
' e9 u r# x8 m7 y5 V+ P' ~0 f
6 v+ E* [2 t1 D% j" [+ v/ l6 B `. Z* w% R- I _7 [% o