有限元法是一种数值分析方法,因此应考虑收敛性问题。
; w" }) _- w; d4 A+ T 有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
/ Z3 E0 A8 J4 g& x" g* L 有限元的收敛条件包括如下四个方面:4 W0 {6 Y. r/ Z% z) t/ r3 G
1)单元内,位移函数必须连续。多项式是单值连续函数,因此选择多项式作为位移函数,在单元内的连续性能够保证。
/ s, S7 ^9 c/ h 2)在单元内,位移函数必须包括常应变项。每个单元的应变状态总可以分解为不依赖于单元内各点位置的常应变和由各点位置决定的变量应变。当单元的尺寸足够小时,单元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为应变的主要部分。为反映单元的应变状态,单元位移函数必须包括常应变项。
! V1 O$ A/ z6 F( L1 Z2 } 3)在单元内,位移函数必须包括刚体位移项。一般情况下,单元内任一点的位移包括形变位移和刚体位移两部分。形变位移与物体形状及体积的改变相联系,因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移是不产生变形的位移。空间一个物体包括三个平动位移和三个转动位移,共有六个刚体位移分量。
- N! ?, B+ x! \/ @$ ? 由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体位移,由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体位移项。: y) s4 I7 `! p% A
4)位移函数在相邻单元的公共边界上必须协调。对一般单元而言,协调性是指相邻单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是说,要保证不发生单元的相互脱离开裂和相互侵入重叠。要做到这一点,就要求函数在公共边界上能由公共节点的函数值唯一确定。对一般单元,协调性保证了相邻单元边界位移的连续性。
* G4 J: O d# S# W( r 但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能保证结构的应变能是有界量。& T! {) ~6 E2 w8 |
总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。" W% |3 k! z5 o3 y
前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要求,满足协调性的单元叫协调单元;否则称为非协调单元。完备性要求是收敛的必要条件,四条全部满足,构成收敛的充分必要条件。
! o: J# ]" W, Y. c" P- g 在实际应用中,要使选择的位移函数全部满足完备性和协调性要求是比较困难的,在某些情况下可以放松对协调性的要求。
/ t# |# F X) ]" G: E. ~ 需要指出的是,有时非协调单元比与它对应的协调单元还要好,其原因在于近似解的性质。假定位移函数就相当于给单元施加了约束条件,使单元变形服从所加约束,这样的替代结构比真实结构更刚一些。但是,这种近似结构由于允许单元分离、重叠,使单元的刚度变软了,或者形成了(例如板单元在单元之间的绕度连续,而转角不连续时,刚节点变为铰接点)对于非协调单元,上述两种影响有误差相消的可能,因此利用非协调单元有时也会得到很好的结果。在工程实践中,非协调元必须通过“小片试验后”才能使用。$ [5 V) Y& M7 a- D6 y( Q' R
元计算科技发展有限公司是一家既年青又悠久的科技型企业, 元计算秉承中国科学院数学与系统科学研究院有限元自动生成核心技术(曾获中科院科技进步二等奖、国家科技进步二等奖),通过自身不懈的努力与完善,形成一系列具有高度前瞻性和创造性的产品。元计算的目标是做强中国人自己的计算技术,做出中国人自己的CAE软件。1 L+ D% U. }" j1 a1 r* C& C
更多资讯请扫描二维码关注元计算官方微信:* [- |6 f4 B3 A7 Q* x: |4 o
6 d1 S% f: e# ?/ j0 r
& s% {' p: a* }$ o: J% v
|