青华模具培训学校

 找回密码
 注册

QQ登录

只需一步,快速开始

青华模具培训学院
查看: 383|回复: 2

[资料分享] 基于Dynaform有限元模拟的3104铝质罐体再拉伸工艺优化

[复制链接]
发表于 2019-7-14 15:07 | 显示全部楼层 |阅读模式
基于Dynaform有限元模拟的3104铝质罐体再拉伸工艺优化5 E( {& C) z% q# o( d2 ^: Y2 D. `
【摘要】分析了再拉伸凸凹模圆角半径、压边力、模具间隙关键工艺参数对板厚为0.265mm的 3104铝质易拉罐罐体成形质量的影响。由Dynaform有限元分析,经数值模拟得出,对于该 材料罐体再拉伸成形压边力取3,000N、凹凸模单边间隙取0.25〜0.26mm,罐体的成形质量较好,优化出减薄后的3104铝合金成形工艺的试验参数。经试验结果表明,采用有 限元分析模拟3104铝质罐体再拉伸成形是可行的,对进一步减薄板材厚度提供借鉴。 / y, e. \. c" s5 U% d! j' K
关键词:有限元模拟;压边力;模具间隙;参数优化
, Z! b  H/ b- Y3 S% X1   引言/ t- i1 @% b4 s4 M) n
    在铝质易拉罐行业,为降低成本,提髙市场竞争力,以减薄铝板材厚度的轻量化研究是重要技术手段。以330ml 罐体规格为例,当铝板材厚度从 0.280mm减薄至0.265mm时,为使罐体成形高度能满足后续工序要求,需把原有的落料规格&139.954mm增至&140.2mm,所涉及的与之相对应的工装较多,改造成本高。根据生产经验及与工装制造商共同研讨,寻求一条在现有工装条件下通过优化部分模具结构来实现,将大大降低改造成本。国内外大量研 究结果表明,利用Dynaform有限元分析软件对金属 板料的成形过程进行有限元模拟,成形精度较高,且 能够对板材成形质量问题有良好的预测作用〜1。本 文采用经验设计与⑽有限元分析软件相结 合,对铝质再拉伸罐体进行有限元分析模拟,提出成 形工艺参数优化的关键要素,为罐体材料轻量化研 发提供借鉴意义。 & T* ]: M  v9 I; d1 _8 Q( E
2   建立有限元网格分析模型" b6 A$ ~- R- h% q9 e/ i
图1为再拉伸模具结构模型,由凸模、凹模、压边圈组成,板厚0.265mm3104铝板材,落料尺寸为小139.954mm,预拉伸后的杯状坯料(89.541mm)。图 2为该模型在Dynaform软件分析环境中,根据板材成形数值模拟的网格划分原则'采用四边形壳单元分別将凸模、凹模、压边圈及坯料模型进行网格划分结果。划分时已尽可能减少三角形单元出现,以防出现网格沙漏及产生应力集中。模型网格划分完毕后, 已对网格单元法线一致性,翘曲角、重叠节点等内容进行检查,未见失败的单元。 20.jpg
2 a6 ]7 ]$ h3 t! t  ^7 D( t4 S
2 ?+ Z% s, w* e' K% A2 E) I8 o0 `
$ m* r, t0 s& R; @# u) `
9 y; m5 E: {+ ?3 L/ P4 {5 u
# x' d0 b8 b6 E3 a! _0 C7 M" n1 |8 B" Q% E8 S5 t3 y1 L
2 F( S. X# a& `! q

( U9 d- K; |5 j# y: a" |% r7 i# E, ?. t( N' k: u
' z, f: r% W, D: S+ R; P) p
/ a, `3 q) T3 i% H0 w/ Y4 _3 j7 Z* i
# y2 I; q( M+ _, \
 楼主| 发表于 2019-7-14 15:15 | 显示全部楼层
3   设 置 工 艺参  数 及 优 化
3 X( W; v9 m# P+ X1 N! k# Y3.1   凸、凹 模 圆 角 半 径3 `( S6 ~9 I4 V
   模 具 的 圆 角 部 分 往 往 是 应变  梯度变化最  大 的地 方,所以也是深拉伸过程中最容易发生塑性失效的区 域。因此,凹模的圆角是影响成形质量的重要因素, 过小的圆角导致应力集中而使制件开裂,过大 的圆角   又不 能 保 证  制 件的强  度和 刚度。笔 者采  用经验设 计法:凹 模 圆 角 半 径 21.jpg (其  中 D2为 经 首 道 拉 伸 后 罐 体 外 径 089.541mm,认 经 再 拉 伸 后 罐 体 外 径 66.53mm,t 为 板 厚);凸 模 的 圆 角 半 径(r凸)=0.8r, 取值为R1.6mm
3 A3 [2 d( ~. D2 w4 G, x3.2   压 边 力 设 置
/ O, h% F" s$ q1 C    在 薄  板  拉伸 过 程 中,为 防  止 制 件 的 边 壁 或 凸  缘 起 皱,需 设 置 压 边 圈 以 使 材 料 被 拉  入凹模前,保持  稳 定  状 态。在 铝 质 罐 体再 拉 伸 前,薄 板 经 落 料  后 已 预 拉 伸 成 杯 状 ,在 行 业 中 该 罐 体 坯 料 板 材 较 薄 及 拉 伸 机 的 特 点 采 用 锥 形 压 边 圈,该 压 边 圈 底部 为 球 形 面 使 之 定 位于 压边 圈的滑 块 上时, 以利于 压紧  坯料 时 自 动定心。压 边圈 的压边力 应适当,若过 大,则需 增 加 拉 伸 力,且 会 引 起制 件 划  痕 甚至  拉 裂;若 过小,则 会引起  制件 的边  壁或 凸 缘 起皱 。一般压 边力的  范围可 采用 公式进行估算,计算 出成形 压边 力 取值为 1,958,7~2,938.1N。  $ a4 S2 |, `+ G) g
23.jpg
/ {) u1 M; f7 X  X8 r% N图3中(a)、(b)、(c)、(d)分别为压边力取值 1,9581N、2,400N、2,8001N及3,000N 的对应模拟结果,从中可知当压边力为1,958N时,罐体出现严重起皱,而随着压边力增大,罐 体 的起皱逐 渐 不明显,当压边力 达到3,000N时罐体基本无起皱现象,仅在 罐 口 部 分 出现起 皱 的危险 信 号,罐身及罐底均显示安全状态;压边力继续增加至3,200N,则 罐 体 部 分 区域 变 薄严 重, 且出 现被 拉 裂的 趋势  。模 拟 结 果 与 理论  计 算 基 本 相近, 因此 本 研究  后 续 的 工 艺参 数 压 边力 均 设 置 为 3,000N。
' Z' {" {- v' J( p# ~% d 24.jpg 1 P8 O& E, c, V2 t, R' y
3.3   模具间隙0 A; c, e. K& B# O8 n# [7 V: {* O
    冲压成形中,凸、凹模的单边间隙大,则摩擦小,能 减少拉伸力,但间隙太大,精度不易控制;单边间隙小则摩擦大,增加拉伸力。一般凸、凹模的单边间隙为 (1〜1.1)t、但对于精度要求较高的薄壁制件,为了减小拉伸后产生回弹,获得高质量表面,可采用负间隙拉伸,其间隙值可取Z/2=(0.9〜0.95)t(其中t为板厚)。生产中用0.28mm板厚时的模具单边间隙取值为0.27mm,设置单边间隙为0.26mm、0.25mm、0.24mm进行模拟,图4中(a)、(b)、(c)、(d)为与之相对应的罐体成形质量。结果显示,当单边间隙取值为0.25mm、0.26mm时罐体成形质量较好,且壁厚分布较均匀;当单边间隙取值为0.2701111时,罐体成形时罐口有起皱出现且表面光洁度差;当单边间隙取值为0.24mm时,初始时罐体表面光洁度光亮,随之在拉伸深度逐步深人时出现拉裂现象。因此,对于0.265mm的3104铝合金再拉伸成形模具的单边间隙取值在0.25〜0.26mm成形质量较为理想。
/ [; g0 p% u% }, W 25.jpg
1 F8 S0 n: P" a  T( x4   试验验证
( W4 d8 ?4 k/ _2 A6 V    基于上述分析,在现有工装条件下,改进部分模 具结构参数,采用数控液压双动拉伸机对0.265mm 的 3104铝合金进行再拉伸成形试验,结果如图5所示, 罐体成形质量良好并无出现成形缺陷,并检测成形罐 体的壁厚分布情况,满足生产工艺要求。5  结束语+ V/ }% G! b" ]3 P
    本文系统分析了凸、凹模圆角半径、压边力、模具 间隙关键工艺参数对板厚为0.265mm的3104铝质易 拉罐罐体成形质量的影响。通过数值模拟优化出减 薄后的3104铝合金成形工艺的试验参数,经试验验证 结果表明,该方法可进一步为铝质罐体材料轻量化技术研究提供借鉴作用。2 T( z0 K# c- x$ E1 |5 K2 ]
26.jpg   |+ }0 C" M+ m8 i& Y7 ^1 a

( K) Z# j8 [: ?2 v; _8 r
! @" F# }$ [9 ^& f0 w4 Z
回复 支持 反对

使用道具 举报

发表于 2019-7-15 13:01 | 显示全部楼层
哥顶的不是帖子,顶的是UG网!是对UG爱好者莫大的支持!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|关于我们|sitemap|小黑屋|Archiver|手机版|UG网-UG技术论坛-青华数控模具培训学校 ( 粤ICP备15108561号 )

GMT+8, 2025-4-2 08:44 , Processed in 0.050683 second(s), 22 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表