轿车普遍采用整体侧围结构(图1),这种设计具有尺寸精度高,节约材料,降低工时和生产成本,前期生产准备时,设备和工装投入费用少等优点。但由于整体侧围结构相对复杂,在图中所示的A 区域,成形时易产生各类缺陷,如凸凹、开裂、起皱,冲击线等,对缺陷的工艺调整(模具、设备、材料)也较复杂。
" Z. |: r( O2 B% g
& E0 j+ r9 P* |1 k! ~1 m: F天籁轿车侧围模具的设计和制造是由日本工厂完成。工艺流程为:拉延、修边斜楔—修边冲孔—整形、修边斜楔—翻边、冲孔斜楔—翻边4个工序。由于零件形状的复杂性,材料流动的多方向性,易造成各种缺陷,如何控制各方向的材料流入量、掌握各方向材料流入对缺陷的影响也是非常困难的,这就对模具调整带来困难。 ( N0 G* `' l0 i0 h3 ^' v$ K3 R
侧围中立柱上方是一个“T型”结构,而且该部位形状变化急剧,这种急剧的形状变化导致此处材料流动复杂,因此,这种部位最易产生凸凹和开裂现象。就侧围中立柱上方的成形特点进行分析。 # y+ o0 @3 o/ ~$ C p0 Z+ q
1 O. l$ g x2 `. Q7 `+ b
零件在成形的初始阶段,材料主要从3个方向进料。由于受到产品“T型”形状的影响,材料在成形的初期就会在中立柱上方表面发生材料过剩,引起凸凹的变形,随着成形的不断加深,多余材料不断吸收,最终过剩的材料不能被零件的形状完全吸收,造成其表面产生凸凹。 形状变化越急剧,在表面聚集的材料就越多,这是总的趋势。加大压边力虽然可以减少初期材料在表面的聚集,但是会阻碍材料的流动造成开裂。另外,材料在3个方向进料时的不合理性和在成形过程中3个方向吸收材料的不均匀性,也是使材料在表面聚集,造成零件表面凸凹。 d9 n+ X: ]# o
! V0 a8 o' N, D, W/ P当成形达到一定深度时,受到上模形状的影响,开始吸收在零件表面聚集的材料,但由于不能完全吸收,因而在最终的成形件上出现凸凹。
9 l- l; \+ u9 e2 W8 ]( ^# U8 F4 t; N# c9 y. b% Y. s3 i* w$ h' a
2 工艺试验 . R7 Y/ e* H) z0 h# I
# r! u& X, O- R- p* h
通过应力应变分析,基本找到解决问题的方向,但对哪些成形条件进行改善,可以达到降低压应力对材料的作用,还需要通过分析模具的具体特点以及做工艺试验才能确定下来。
: G. @8 k8 E2 o/ f- d! e% T* |" ~+ w. K$ G( h* a5 K
2.1 影响零件表面凸凹的因素分析 1 G* |: b. O) g' h6 _5 a e
0 q# p0 m: |0 T: d从上述的分析结果,并结合模具的构造和工艺调整参数来看,影响压应力作用的因素,也就是影响零件表面凸凹的因素有以下几个方面:① 设备精度及平衡缸的压力变化;② 气垫压力的大小及压力变化;③ 托杆长度一致;④ 上下模具的研合率;⑤ 平衡块布置的合理性;⑥ 拉延筋的布置及形状;⑦ 材料的机械特性值;⑧ 平衡块调整的合理性;⑨ 拉延筋的松紧程度。
, [( z4 S+ C W! S
# m N+ K! v' o2.2 工艺方案的确定
/ J0 h& v2 o1 `, ]9 T
7 o% B7 K, O: b( ^1 j4 e$ H1 n根据上述的影响因素,制定如下工艺试验方案: , i# z/ [* p. F0 H
* @6 [, g9 C- n# ~& W$ D4 m/ L(1)先对①、②、③项影响因素进行调查确认。通过调查,设备精度良好,平衡缸的压力变化在规定范围内。气垫压力在理想状态(压力小凸凹量变大,压力大材料开裂),压力变化的范围很小,完全符合成形时对压力波动的要求。托杆长度符合标准要求。
* U# a m" v, d4 u: d2 U
% {6 g3 M5 _/ P3 M: `* a6 c(2)再对④、⑤、⑥项影响因素进行调查确认。由于模具结构限制,平衡块位置无法变动。
' k4 z% d0 F: a! ?, v u* |, I) U5 Y
0 v7 {, s( ]2 \上下模具的研合率较好。拉延筋的布置及形状合理,研合率较好。
2 X# J; {( C5 {- l- Y. p, L3 l(3)对⑦项影响因素进行调查确认。钢材机械特性值变化较大,影响零件在成形时的1.2 T 型部的应力应变分析以进料区为研究对象,对变形量最大点A点进行应力应变分析。
7 P) ~' M. h8 ^- q! T从应力应变图可以看出,成形零件表面在车体的y向应变比x向的应变大,造成y向多材料,材料流动,从而影响零件表面的凸凹量。
/ C: J! S' v" s1 p: Y, p
2 j* D) |; J9 A) V& ^8 N3 S$ z j(4)对⑧、⑨项影响因素进行调查确认。结合应力应变分析,针对影响三个方向进料状态的主要因素进行调整,以达到理想效果。2 L" K% d4 [$ `( |
2.3 工艺试验的效果及分析
9 j5 g/ Z2 P/ @& a% o0 ~! p# z" g
" c' l" T: D# r% Z不同的材料特性值,对零件表面凸凹的影响较大,如表1 所示。从表1 中可以看出,屈服强度大的材料,抗失稳能力强,因而零件表面凸凹量小,但屈服强度大的材料其延伸率就会降低,易造成零件开裂,通过多次试验结果分析,屈服强度在148 ~ 150MPa,延伸率在48% ~ 50% 的范围内,零件表面凸凹量小且不易开裂。
8 q% \4 s5 `2 w4 ^" Z+ i2 L5 X$ P, O$ X+ R, G3 |, S; b7 i, Z
通过调整三向进料状态,试验2取得了满意的效果,试验3与未调整前的状态基本一致,试验1、试验4 比未调整前的状态差。
3 r% b: y1 N) c; G3 结论
% i' s9 a2 W9 ~
& l+ \1 {+ a5 k5 s9 j7 ?* ]/ S+ H在生产过程中通过对模具的调整和钢材特性值的管理,凸凹量有了明显改善,经过VES评价为OK。分析其原因,一是使三向进料趋于平衡,在成形初期产生的材料聚集程度得到改善,有利于成形中后期多余材料的充分吸收。二是缓解零件急剧变化一侧的进料阻力,降低内应力对表面的压缩作用,改善材料的失稳状态。 |