|
1.阻尼模型三! f9 M' C" v+ h( n3 K* K2 L( u
结构阻尼是对振动结构所耗散的能量的测量,通常用振动一次的能量耗散率来表示结构阻尼的强弱。近几十年来,人们提出了多种阻尼理论假设,在众多的阻尼理论假设中,用得较多的是两种线性阻尼理论:粘滞阻尼理论和复阻尼理论(滞变阻尼理论)。( `0 k0 p7 p3 \3 ]
复阻尼理论认为结构具有复刚度,在考虑阻尼时在弹性模量或刚度系数项前乘以复常数 即可,v为复阻尼系数。复阻尼理论对于一般的结构动力响应来说,计算过程非常复杂,因此,在动力响应分析中,复阻尼理论应用不多,本文限于篇幅,也就不再展开了。
$ r1 Z/ d R8 p2 ^1 w7 C1 V粘滞阻尼理论假定阻尼力与运动速度成正比,通常是用不同频率的阻尼比ζ来表征系统的阻尼:. n5 x9 ?: ^6 p5 ?4 ?
粘滞阻尼理论最显著的特点在于其阻尼力是直接根据与相对速度成正比的关系给出的,不论是简谐振动或是非简谐振动,都可直接写出系统的运动方程,而且均为线性微分方程,给理论分析带来了很大的方便。: B* ~1 Z4 e. q8 U, J5 o5 `2 D/ Q
在多自由度系统中采用等效粘滞模态阻尼,阻尼力向量的表达式为三维|
4 W @5 c9 G( [+ p% p% i若[C」可以通过模态向量正交化为对角矩阵时,则称为正交阻尼或比例阻尼。反之,则称之为非正交阻尼。正交阻尼原则上适用于阻尼特性分布比较均匀的工程结构,但由于其使用方便,分析人员对大部分桥梁都倾向于使用正交阻尼,非正交阻尼因为计算较为麻烦用得较少。* x& g* \5 o' q1 u$ C6 Q* S0 S9 L8 K
Rayleigh阻尼模型是广泛采用的一种正交阻尼模型,其数学表达式如下:
; v/ \: |3 U8 {) p f
/ e1 L: o6 w) ]8 o8 A# l+ O, J
& p" X; S* i/ ]% i% j- w4 P
a0和a1称为Rayleigh阻尼常数。
, U4 L q/ m3 u在Rayleigh阻尼模型下,各阶阻尼比可表示为三" v8 [2 h5 [! X- `4 u5 J
式中ζi称为第i阶振型的模态阻尼比,因此若已知任意两阶振型的阻尼比ζi和ζj,则可定出阻尼常数www( ~& R+ y( i# r3 W* R- h
确定了a0和al之后,即可确定出各阶振型的模态阻尼比,并确定阻尼矩阵。3 P5 ]6 ? F) n# ~4 ?6 z
2.实际抗震分析中由于阻尼选取不同所产生的问题* U h' K) H C+ j2 Q) N
目前,桥梁dizhen反应分析一般以直接积分的时程分析方法为主。其阻尼模型取Rayleigh阻尼模型,并以主塔或主梁的两个较低阶振型频率ωi和ωj对应的阻尼比作为ζi和ζj,接式(3)和式(4) 求出其余各阶频率的阻尼比,并求出阻尼矩阵代人动力方程,用直接积分的方法求解动力方程。这样处理阻尼虽然非常简单,但也产生了以下两个不可忽视的问题:6 g7 ]# M/ H( h1 k" A4 ]3 P2 ^% C
(1)如前所述,Rayleigh阻尼作为一种正交阻尼,适用于阻尼特性分布非常均匀的工程结构。但是大跨桥梁一般来说都不能算作非常均匀的结构。例如,为了提高桥梁的跨越能力,主梁一般采用钢箱梁或钢混叠合梁,而主塔和边墩则采用钢筋混凝土材料,两者的阻尼特性相差比较大。即使主梁材料特性与主塔差不多,大跨桥梁由于抗风和抗震的要求,经常会在桥梁结构的某些部位加有人工阻尼装置,比如桥墩上安放高阻尼的抗震支座、桥塔上安放控制振动的装置TMD等,这都会产生摩擦阻尼或集中阻尼从而造成阻尼特性的不均匀分布。这样的阻尼均匀性前提得不到满足的情况下,仍按照 Rayleigh阻尼模型去计算各阶振型对应的阻尼比势必会造成除ωi和ωj两阶之外其他各阶振型阻尼比与真实值有或多或少的差别。
& K7 m$ {# Q0 u R (2)根据同济大学土木防灾国家重点实验室对国内几十座大跨桥梁进行抗震分析后总结的经验,边墩。辅助墩等部位是大跨桥梁抗震设施的重点。但是采用Rayleigh阻尼模型时,用于计算其他各阶振型阻尼比的ωi和ωj一般取的是较低阶的振型,而边墩辅助墩的振动一般都发生在高阶振型。根据Rayleigh阻尼模型图,可以看出离ωi和ωj越远的振型,其阻尼比就越不准,而且随着图上阻尼比按频率增加的速度越来越快,边墩部分振动频率对应的阻尼比比实际值往往偏大,从这一点讲会导致边墩部分反应的计算结果偏于不安全。 ^5 v. o$ H) e& `9 H
一些桥梁抗震研究人员已经注意到了以上两个问题,他们采取的措施是根据分析的部位不断变换所选择的ωi和ωj,比如计算桥塔的纵向dizhen反应时就选择对桥塔的纵向反应起主要作用的两阶频率作为ωi和ωj,来计算其它各阶阻尼比,计算其它dizhen反应时也依此类推。这样就需要分析人员不断的重复选择。和约和进行时程计算,十分繁琐。1 N. u/ I* E1 X1 v4 i+ l, i# }. b
, u2 u; Q! I+ p* O: z7 z& ^" j" r0 h7 g- S
& d" ^# |* p- G& ]2 v
3.解决方法
( m. q# y) |% m0 P* P7 N 由以上论述,我们已经了解到阻尼是一个非常复杂的问题,仅仅依靠Rayleigh阻尼模型,会对大跨桥梁尤其是边墩辅助墩等部位的dizhen反应分析出现不应有的误差。因此,我们尝试寻找一种既不过分繁琐又比较准确的方法。
$ y! F. \" b4 t# t R/ \& |在前面的论述中,我们发现阻尼比是反应阻尼的一个方便而有效的量,它把阻尼特性和振型频率联系起来,使得动力方程分析起来更为简单,而且阻尼比可以通过桥梁实测测出。
$ |$ c8 C) P. L) I" G6 R7 p; l如果我们直接指定对桥塔。主梁、边墩等重要部位反应起主要作用的一些振型频率的阻尼比,而对其余各阶振型频率的阻尼比采用线性内插的方法确定,这样做也可以形成阻尼比矩阵。由于我们通过以前的工程实例发现结构各部位的反应来说少数几阶振型的贡献最为显著(这些振型的贡献占到70%~ 80%,甚至更多),因此,这样做能够保证计算的正确性,而且并不繁琐,此对,以实测试验数据作为基础,更增加了其准确性。同济大学桥梁系近十几年来,通过为国内几十座大型桥梁进行竣工检测、成桥检测积累了大量的阻尼实测资料,并有研究人员准备把这些阻尼资料整理形成桥梁阻尼数据库。有了这些数据资料为基础,通过指定主要振型频率阻尼比,来计算结构动力反应是行得通的,并且结合下面的振型叠加法,会使计算更加简便。 |
|